Nav: Home

Early life stress plus overexpressed FKBP5 protein increases anxiety behavior

June 11, 2019

TAMPA, Fla. (June 10, 2019) - Researchers continue to dig for molecular clues to better understand how gene-environment interactions influence neuropsychiatric disease risk and resilience. An increasing number of studies point to a strong association between the FKBP5 gene and increased susceptibility to depression, anxiety, post-traumatic stress disorder and other mental health disorders.

Adding to the growing evidence, a new preclinical study by University of South Florida neuroscientists finds that anxiety-like behavior increases when early life adversity combines with high levels of FKBP5 - a protein capable of modifying hormonal stress response. Moreover, the researchers demonstrate this genetic-early life stress interaction amplifies anxiety by selectively altering signaling of the enzyme AKT in the dorsal hippocampus, a portion of the brain primarily responsible for cognitive functions like learning and memory.

While more research is required, the study suggests that FKBP5 may be an effective target for treating anxiety and other mood disorders.

The findings were published June 4 in the International Journal of Molecular Sciences.

"We know that the combination of genetic variations and environmental factors can make people either more or less susceptible to mental illness - even when they experience the same types of trauma," said senior author Laura Blair, PhD, assistant professor of molecular medicine at the USF Health Byrd Alzheimer's Center. Postdoctoral scholar Marangelie Criado-Marrero, PhD, was lead author of the study.

"We hypothesized that high FKBP5 and early life stress might yield neuropsychiatric symptoms through altered cellular stress response pathways in the brain."

In a series of experiments, newborn mice overexpressing human FKBP5 in the forebrain were divided into two groups - one group was exposed to an early life stress (maternal separation), and the other was not. Two control groups were comprised of stressed and non-stressed mice without brain overexpression of FKBP5. At two months, when the mice were young adults, an elevated-plus maze with open and closed arms was used to test anxiety-like behavior. Compared to all other groups, the mice with high FKBP5 and early life stress showed more anxiety as measured by their tendency to stay within enclosed areas of the maze rather than naturally explore all arms of the maze.

The anxiety effect was more pronounced in the female mice than in males, an observation that aligns with sex differences noted in humans with anxiety disorders, Dr. Blair said.

The researchers also analyzed molecular changes in brains of the mice. They found that AKT signaling, specifically in the dorsal hippocampus, differed depending upon whether or not the mice with high FKBP5 had experienced maternal separation as newborns. AKT signaling - shown to be altered in Alzheimer's disease and cancer as well as in mental health disorders -- affects brain cell survival and metabolism, and the brain's ability to adapt to new information.

"The AKT signaling pathway was inversely regulated as a result of early life stress. High FKBP5 normally decreases AKT signaling, but when early life stress was added to overexpressed FKBP5 that signaling activity increased," Dr. Blair said. "Overall, our findings highlight the importance of stress and genes (like FKBP5) in modulating vulnerability to mood disorders and learning impairments."
-end-
The USF Health researchers plan to next study the interaction of high FKBP5 and early life stress in older mice to determine how anxiety is affected by aging.

The study was supported by grants from the NIH's National Institute of Mental Health and National Institute of Neurological Disorders and Stroke.

Anxiety disorders are among the most common mental health conditions in the U.S, affecting 40 million adults, and nearly one in three of all adolescents will experience an anxiety disorder, according to the NIH.

USF Health's mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Physical Therapy and Rehabilitation Sciences, the Biomedical Sciences Graduate and Postdoctoral Programs, and the physicians of USF Health, the largest multispecialty group practice on Florida's west coast. The University of South Florida, established in 1956 and located in Tampa, is a high-impact, global research university dedicated to student success. USF ranks in the top 25 nationally for research expenditures among public universities, according to the National Science Foundation.

University of South Florida (USF Innovation)

Related Stress Articles:

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.