Nav: Home

Penn engineers design nanostructured diamond metalens for compact quantum technologies

June 11, 2019

At the chemical level, diamonds are no more than carbon atoms aligned in a precise, three-dimensional (3D) crystal lattice. However, even a seemingly flawless diamond contains defects: spots in that lattice where a carbon atom is missing or has been replaced by something else. Some of these defects are highly desirable; they trap individual electrons that can absorb or emit light, causing the various colors found in diamond gemstones and, more importantly, creating a platform for diverse quantum technologies for advanced computing, secure communication and precision sensing.

Quantum technologies are based on units of quantum information known as "qubits." The spin of electrons are prime candidates to serve as qubits; unlike binary computing systems where data takes the form of only 0s or 1s, electron spin can represent information as 0, 1, or both simultaneously in a quantum superposition. Qubits from diamonds are of particular interest to quantum scientists because their quantum-mechanical properties, including superposition, exist at room temperature, unlike many other potential quantum resources.

The practical challenge of collecting information from a single atom deep inside a crystal is a daunting one, however. Penn Engineers addressed this problem in a recent study in which they devised a way to pattern the surface of a diamond that makes it easier to collect light from the defects inside. Called a metalens, this surface structure contains nanoscale features that bend and focus the light emitted by the defects, despite being effectively flat.

The research was led by Lee Bassett, Assistant Professor in the Department of Electrical and Systems Engineering, graduate student Tzu-Yung Huang, and postdoctoral researcher Richard Grote from Bassett's lab.

Additional Bassett Lab members David Hopper, Annemarie Exarhos and Garrett Kaighn contributed to the work, as did Gerald Lopez, director of Business Development at the Singh Center for Nanotechnology, and two members of Amsterdam's Center for Nanophotonics, Sander Mann and Erik Garnett.

The study was published in Nature Communications.

The key to harnessing the potential power of quantum systems is being able to create or find structures that allow electron spin to be reliably manipulated and measured, a difficult task considering the fragility of quantum states.

Bassett's lab approaches this challenge from a number of directions. Recently, the lab developed a quantum platform based on a two-dimensional (2D) material called hexagonal boron nitride which, due to its extremely thin dimensions, allows for easier access to electron spins. In the current study, the team returned to a 3D material that contains natural imperfections with great potential for controlling electron spins: diamonds.

Small defects in diamonds, called nitrogen-vacancy (NV) centers, are known to harbor electron spins that can be manipulated at room temperature, unlike many other quantum systems that demand temperatures approaching absolute zero. Each NV center emits light that provides information about the spin's quantum state.

Bassett explains why it is important to consider both 2D and 3D avenues in quantum technology:

"The different material platforms are at different levels of development, and they will ultimately be useful for different applications. Defects in 2D materials are ideally suited for proximity sensing on surfaces, and they might eventually be good for other applications, such as integrated quantum photonic devices," Bassett says. "Right now, however, the diamond NV center is simply the best platform around for room-temperature quantum information processing. It is also a leading candidate for building large-scale quantum communication networks."

So far, it has only been possible to achieve the combination of desirable quantum properties that are required for these demanding applications using NV centers embedded deep within bulk 3D crystals of diamond.

Unfortunately, those deeply embedded NV centers can be difficult to access since they are not right on the surface of the diamond. Collecting light from those hard-to-reach defects usually requires a bulky optical microscope in a highly controlled laboratory environment. Bassett's team wanted to find a better way to collect light from NV centers, a goal they were able to accomplish by designing a specialized metalens that circumvents the need for a large, expensive microscope.

"We used the concept of a metasurface to design and fabricate a structure on the surface of diamond that acts like a lens to collect photons from a single qubit in diamond and direct them into an optical fiber, whereas previously this required a large, free-space optical microscope," Bassett says. "This is a first key step in our larger effort to realize compact quantum devices that do not require a room full of electronics and free-space optical components."

Metasurfaces consist of intricate, nanoscale patterns that can achieve physical phenomena otherwise impossible at the macroscale. The researchers' metalens consists of a field of pillars, each 1 micrometer tall and 100-250 nanometers in diameter, arranged in such a way that they focus light like a traditional curved lens. Etched onto the surface of the diamond and aligned with one of the NV centers inside, the metalens guides the light that represents the electron's spin state directly into an optical fiber, streamlining the data collection process.

"The actual metalens is about 30 microns across, which is about the diameter of a piece of hair. If you look at the piece of diamond that we fabricated it on, you can't see it. At most, you could see a dark speckle," says Huang. "We typically think of lenses as focusing or collimating, but, with a metastructure, we have the freedom to design any kind of profile that we want. It affords us the freedom to tailor the emission pattern or the profile of a quantum emitter, like an NV center, which is not possible, or is very difficult, with free-space optics."

To design their metalens, Bassett, Huang and Grote had to assemble a team with a diverse array of knowledge, from quantum mechanics to electrical engineering to nanotechnology. Bassett credits the Singh Center for Nanotechnology as playing a critical role in their ability to physically construct the metalens.

"Nanofabrication was a key component of this project," says Bassett. "We needed to achieve high-resolution lithography and precise etching to fabricate an array of diamond nanopillars on length scales smaller than the wavelength of light. Diamond is a challenging material to process, and it was Richard's dedicated work in the Singh Center that enabled this capability. We were also lucky to benefit from the experienced cleanroom staff. Gerald helped us to develop the electron beam lithography techniques. We also had help from Meredith Metzler, the Thin Film Area Manager at the Singh Center, in developing the diamond etch."

Although nanofabrication comes with its challenges, the flexibility afforded by metasurface engineering provides important advantages for real-world applications of quantum technology:

"We decided to collimate the light from NV centers to go to an optical fiber, as it readily interfaces with other techniques that have been developed for compact fiber-optic technologies over the past decade," Huang says. "The compatibility with other photonic structures is also important. There might be other structures that you want to put on the diamond, and our metalens doesn't preclude those other optical enhancements."

This study is just one of many steps towards the goal of compacting quantum technology into more efficient systems. Bassett's lab plans to continue exploring how to best harness the quantum potential of 2D and 3D materials.

"The field of quantum engineering is advancing quickly now in large part due to the convergence of ideas and expertise from many disciplines including physics, materials science, photonics and electronics," Bassett says. "Penn Engineering excels in all these areas, so we are looking forward to many more advances in the future. Ultimately, we want to transition this technology out of the lab and into the real world where it can have an impact on our everyday lives."
-end-
This work was supported by the National Science Foundation through awards ECCS-1553511 and ECCS-1842655, and by the Netherlands Organisation for Scientific Research under the European Union's Seventh Framework Programme, (FP/2007-2013)/ERC grant agreement no. 337328, Nano-EnabledPV. Facilities and instrumentation were supported by the NSF through Penn's Materials Research Science and Engineering Center under grant DMR-1720530 and through the National Nano-technology Coordinated Infrastructure under grant ECCS-1542153.

University of Pennsylvania

Related Quantum Information Articles:

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
APS Tip Sheet: Improving quantum information processing
A new protocol compares the closeness of quantum states in information sent from different devices.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Extracting hidden quantum information from a light source
Researchers report on a technique to extract the quantum information hidden in an image that carries both classical and quantum information.
Ultrafast particle interactions could help make quantum information devices feasible
Research presents the detection of energy transfer from excited electrons to the crystal lattice on the femtosecond timescale.
Shaping nanoparticles for improved quantum information technology
Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.
Next-generation single-photon source for quantum information science
University of Illinois Physics Professor Paul Kwiat and his former postdoctoral researcher Fumihiro Kaneda (now at Tohoku University) have built what Kwiat believes is 'the world's most efficient single-photon source.' And they are still improving it.
More Quantum Information News and Quantum Information Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.