Nav: Home

Research reveals sustainable method to produce lifesaving opiate antidotes at reduced cost

June 11, 2019

ST. LOUIS, MO, June 11, 2019 - Overdose from opiates has skyrocketed. According to the National Center for Health Statistics, on average, 130 Americans die every day from an opioid overdose.1 The high cost of antidotes such as NARCAN® prevents many first responders from having access to lifesaving antidotes when they need it most.2 Researchers at the Donald Danforth Plant Science Center have identified a new method of producing these compounds using a microorganism discovered in a waste stream associated with the processing of opium poppy. This green chemistry process has the potential to greatly reduce the cost of the antidote drugs as well as decrease chemicals currently used that result in large amounts of harmful waste. Details of the discovery were published as the cover story in the journal Nature Sustainability: "Enzyme morphinan N-demethylase for more sustainable opiate processing".

"Enzymes perform reactions at efficiencies that surpass synthetic chemistry, thereby reducing the cost and impact of drug production on the environment. We work now to optimize production levels of the enzyme to a scale sufficient for industrial processes. Greener manufacturing would make a difference in people's lives," said Megan Augustin, lead author and research associate in the Kutchan lab at the Danforth Center.

Naturally occurring opiates, such as morphine and thebaine, are produced in poppy species. Thebaine is converted into painkillers and opiate addiction treatments, the latter requiring a chemical reaction called N-demethylation. Current opiate N-demethylation utilizes noxious reagents, resulting in harmful waste. One way to make opiate production more sustainable is to use enzymes rather than chemicals. Microorganisms provide a rich source of enzymes useful for metabolizing unique compounds in their environment. Augustin and her colleagues probed an opium processing waste stream sample to identify an organism capable of catalyzing opiate N-demethylation. To identify a biocatalyst, a sludge sample was subjected to minimal medium containing thebaine as the sole carbon source. This led to the discovery of Thebainfresser, a Methylobacterium that metabolizes opiates by removing the N-methyl group. N-demethylation was induced following growth in minimal medium, a characteristic that led to discovery of the underlying gene MND (morphinan N-demethylase). The enzyme MND was found to be robust and versatile, N-demethylating structurally diverse substrates at varying temperatures and pH levels. In addition, MND tolerated selected organic solvents and maintained activity when immobilized. These properties make it an attractive candidate for further development for pharmaceutical manufacture.
-end-
About the Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at @DanforthCenter.

  1. Wide-ranging online data for epidemiologic research (WONDER). Atlanta, GA: CDC, National Center for Health Statistics; 2017. Available at http://wonder.cdc.gov.
  2. Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use. National Academy of Sciences; 2017. Available at http://nationalacademies.org/hmd/reports/2017/pain-management-and-the-opioid-epidemic.aspx.


Donald Danforth Plant Science Center

Related Enzyme Articles:

Enzyme may represent new target for treating asthma
An enzyme called diacylglycerol kinase zeta (DGKζ) appears to play an important role in suppressing runaway inflammation in asthma and may represent a novel therapeutic target.
Enzyme may indicate predisposition to cardiovascular disease
Study suggests that people with low levels of PDIA1 in blood plasma may be at high risk of thrombosis; this group also investigated PDIA1's specific interactions in cancer.
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
Novel enzyme discovered in intestinal bacteria
At the University of Konstanz, in cooperation with Harvard University, a key enzyme for formation of harmful hydrogen sulphide in the human gut by Bilophila bacteria has been discovered.
Chemists discover unexpected enzyme structure
MIT chemists have discovered a unique aspect of the structure of carbon monoxide dehydrogenase, a bacterial enzyme that can convert carbon dioxide to carbon monoxide.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
Enzyme discovery could help in fight against TB
Research by a team led by Dr. Elizabeth Fullam has revealed new findings about an enzyme found in Mycobacterium tuberculosis (Mtb), the bacterium that causes TB.
Researchers discover new enzyme paradigm for critical reaction researchers discover new enzyme paradigm for critical reaction in converting lignin to useful produce useful products
An international research team, including scientists from the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), has discovered and characterized a new family of cytochrome P450 enzymes that is critical to improving the conversion of lignin--one of the main components of plants--into valuable products such as nylon, plastics, and chemicals.
Novel genetic method improves efficiency of enzyme
Researchers at the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to break down biomass.
More Enzyme News and Enzyme Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.