Nav: Home

Superweed resists another class of herbicides, study finds

June 11, 2019

URBANA, Ill. - We've all heard about bacteria that are becoming resistant to multiple types of antibiotics. These are the so-called superbugs perplexing and panicking medical science. The plant analogue may just be waterhemp, a broadleaf weed common to corn and soybean fields across the Midwest. With resistance to multiple common herbicides, waterhemp is getting much harder to kill.

In a new study from the University of Illinois, scientists document waterhemp's resistance to yet another class of herbicides, known as Group 15s. The study provides the first documentation of a non-grass plant to be resistant to Group 15 herbicides.

There are many herbicides on the market, but they all fall into one of 16 classes describing their mode of action (MOA), or specific target in the plant that the chemical attacks. Because of various regulations and biological realities, a smaller number of herbicide MOAs can be used on any given crop and the suite of weeds that goes along with it. Historically, about nine have been useful for waterhemp - and now the weed appears to be resistant to at least seven.

"In some areas, we're one or two MOAs away from completely losing chemical control of waterhemp and other multiple-herbicide-resistant weeds," says Adam Davis, head of the Department of Crop Sciences at Illinois and co-author on the study. "And there are no new herbicide MOAs coming out. There haven't been for 30 years."

Illinois weed scientist and co-author Aaron Hager adds, "We don't want to panic people, but farmers need to be aware this is real. It continues on with the challenges we've warned people about for years."

The research team tested the effectiveness of soil-applied Group 15 herbicides in a Champaign County population already resistant to five MOAs. They applied eight Group 15 formulations in the field at their label rates, and chose three - non-encapsulated acetochlor (Harness), S-metolachlor (Dual Magnum), and pyroxasulfone (Zidua) - for a rate-titration experiment in which the herbicides were applied at one-half, one, two, and four times the label rate.

The eight Group 15 products varied in their effectiveness, with encapsulated acetochlor (Warrant), S-metolachlor, metolachlor (Stalwart), and dimethenamid-P (Outlook) performing the worst. These products provided less than 25% control 28 days after application and less than 6% control 14 days later.

Of the rate-titration experiment, Hager says, "We found we could apply significantly higher than the labeled dose and still see resistance." For example, S-metolachlor provided only 10% control at the standard label rate, 20% at 2x the label rate, and 45% at 4x the label rate.

Hager says farmers might not notice the poor performance of these soil-applied pre-emergence herbicides because waterhemp germinates continuously throughout the season. When a weed pops up mid-season, it's hard to tell exactly when it emerged and whether it was exposed to residual soil-applied herbicides.

"If you think about how you use these products, rarely do they last the entire year. They're very dependent on environmental conditions to work effectively. It could be too wet or too dry. Generally speaking, you have some weed escape. But many farmers would chalk it up to these weather issues. If you're not thinking about it, you could very easily overlook resistance," Hager says.

To confirm results from the field, the team performed a dose response test in the greenhouse. In that test, four waterhemp populations - three with resistance to multiple herbicides and one that is sensitive to all herbicides - were dosed with increasing levels of S-metolachlor, acetochlor, dimethenamid-P, and pyroxasulfone. Populations from Champaign County and McLean County survived higher levels of the Group 15 herbicides than the other populations.

Hager suspects the plants are breaking the chemicals down before they cause damage, a trick known as metabolic resistance. All organisms can turn on cellular defenses against toxins, but it is rather worrisome when weeds and other undesirable pests use their biology against human interventions.

"As we get into the era of metabolic resistance, our predictability is virtually zero. We have no idea what these populations are resistant to until we get them under controlled conditions," Hager says. "It's just another example of how we need a more integrated system, rather than relying on chemistry only. We can still use the chemistry, but have to do something in addition.

"We want farmers to understand that we have to rethink how we manage waterhemp long term."
-end-
The article, "Characterization of multiple herbicide-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois to VLCFA-inhibiting herbicides," is published in Weed Science [DOI: 10.1017/wsc.2019.13]. Authors include Seth Strom, Lisa Gonzini, Charlie Mitsdarfer, Adam Davis, Dean Riechers, and Aaron Hager, all from the Department of Crop Sciences in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois. The research was supported by Syngenta Crop Protection.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Herbicides Articles:

Study documents the challenges of herbicide-resistant annual bluegrass in turf
In an study featured in the journal Weed Science, researchers in Australia examined 31 populations of annual bluegrass suspected to be herbicide resistant.
How atrazine regulations have influenced the environment
Opposing chemical trends linked to atrazine regulations from 1990s.
Overuse of herbicides costing UK economy £400 million per year
Scientists from international conservation charity ZSL (Zoological Society of London) have for the first time put an economic figure on the herbicidal resistance of a major agricultural weed that is decimating winter-wheat farms across the UK.
Palm oil: Less fertilizer and no herbicide but same yield?
Environmentally friendlier palm oil production could be achieved with less fertilizer and no herbicide, while maintaining profits.
Fighting a mighty weed
Weeds are pesky in any situation. Now, imagine a weed so troublesome that it has mutated to resist multiple herbicides.
Newly identified rice gene confers multiple-herbicide resistance
A rice gene that renders the crop resistant to several widely used beta-triketone herbicides has been identified, researchers report, revealing the genetic cause of herbicide susceptibility that has been identified in some important rice varieties.
Superweed resists another class of herbicides, study finds
We've all heard about bacteria that are becoming resistant to multiple types of antibiotics.
New insights on the control of dicamba-resistant kochia are featured by Weed Technology
Kochia is a highly invasive weed that is common in the Great Plains, where it has developed resistance to multiple herbicides.
CRISPRed wheat helps farmers control weeds
Recently, a research team led by Profs. GAO Caixia and LI Jiayang at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (IGDB, CAS), together with Associate Prof.
The growth of a wheat weed can be predicted to reduce the use of herbicides
The study focuses on wild oats and is based on precision agriculture as well as the use of multispectral images.
More Herbicides News and Herbicides Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.