Nav: Home

The sun may have a dual personality, simulations suggest

June 11, 2019

Researchers at CU Boulder have discovered hints that humanity's favorite star may have a dual personality, with intriguing discrepancies in its magnetic fields that could hold clues to the sun's own "internal clock."

Physicists Loren Matilsky and Juri Toomre developed a computer simulation of the sun's interior as a means of capturing the inner roiling turmoil of the star. In the process, the team spotted something unexpected: On rare occasions, the sun's internal dynamics may jolt out of their normal routines and switch to an alternate state--bit like a superhero trading the cape and cowl for civilian clothes.

While the findings are only preliminary, Matilsky said, they may line up with real observations of the sun dating back to the 19th century.

He added that the existence of such a solar alter-ego could provide physicists with new clues to the processes that govern the sun's internal clock--a cycle in which the sun switches from periods of high activity to low activity about once every 11 years.

"We don't know what is setting the cycle period for the sun or why some cycles are more violent than others," said Matilsky, a graduate student at JILA. "Our ultimate goal is to map what we're seeing in the model to the sun's surface so that we can then make predictions."

He will present the team's findings at a press briefing today at the 234th meeting of the American Astronomical Society in St. Louis.

The study takes a deep look at a phenomenon that scientists call the solar "dynamo," essentially a concentration of the star's magnetic energy. This dynamo is formed by the spinning and twisting of the hot gases inside the sun and can have big impacts--an especially active solar dynamo can generate large numbers of sunspots and solar flares, or globs of energy that blast out from the surface.

But that dynamo isn't easy to study, Matilsky said. That's because it mainly forms and evolves within the sun's interior, far out of range of most scientific instruments.

"We can't dive into the interior, which makes the sun's internal magnetism a few steps removed from real observations," he said.

To get around that limitation, many solar physicists use massive supercomputers to try to recreate what's occurring inside the sun.

Matilsky and Toomre's simulation examines activity in the outer third of that interior, which Matilsky likens to "a spherical pot of boiling water."

And, he said, this model delivered some interesting results. When the researchers ran their simulation, they first found that the solar dynamo formed to the north and south of the sun's equator. Following a regular cycle, that dynamo moved toward the equator and stopped, then reset in close agreement with actual observations of the sun.

But that regular churn wasn't the whole picture. Roughly twice every 100 years, the simulated sun did something different.

In those strange cases, the solar dynamo didn't follow that same cycle but, instead, clustered in one hemisphere over the other.

"That additional dynamo cycle would kind of wander," Matilsky said. "It would stay in one hemisphere over a few cycles, then move into the other one. Eventually, the solar dynamo would return to its original state."

That pattern could be a fluke of the model, Matilsky said, but it might also point to real, and previously unknown, behavior of the solar dynamo. He added that astronomers have, on rare occasions, seen sun spots congregating in one hemisphere of the sun more than the other, an observation that matches the CU Boulder team's findings.

Matilsky said that the group will need to develop its model further to see if the dual dynamo pans out. But he said that the team's results could, one day, help to explain the cause of the peaks and dips in the sun's activity--patterns that have huge implications for climate and technological societies on Earth.

"It gives us clues to how the sun might shut off its dynamo and turn itself back on again," he said.
-end-


University of Colorado at Boulder

Related Energy Articles:

Quantum vacuum: Less than zero energy
According to quantum physics, energy can be 'borrowed' -- at least for some time.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
Putting that free energy around you to good use with minuscule energy harvesters
Scientists at Tokyo Tech developed a micro-electromechanical energy harvester that allows for more flexibility in design, which is crucial for future IoT applications.
A new way to transfer energy between cells
Researchers have described a new method for the transmission of electrons between proteins that refutes the evidence from experiments until now.
Renewable energy cooperatives, an opportunity for energy transition
Three researchers from the UPV/EHU's Faculty of Engineering -- Bilbao and the University of Valladolid have explored how renewable energy cooperatives have evolved.
MIT Energy Initiative study reports on the future of nuclear energy
In new MIT report, study authors analyze the reasons for the current global stall of nuclear energy capacity and discuss measures that could be taken to arrest and reverse that trend.
Wave energy converters are not geared towards the increase in energy over the last century
Wave energy converters are designed to generate the maximum energy possible in their location and take a typical year in the location as a reference.
More Energy News and Energy Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.