Nav: Home

The sun may have a dual personality, simulations suggest

June 11, 2019

Researchers at CU Boulder have discovered hints that humanity's favorite star may have a dual personality, with intriguing discrepancies in its magnetic fields that could hold clues to the sun's own "internal clock."

Physicists Loren Matilsky and Juri Toomre developed a computer simulation of the sun's interior as a means of capturing the inner roiling turmoil of the star. In the process, the team spotted something unexpected: On rare occasions, the sun's internal dynamics may jolt out of their normal routines and switch to an alternate state--bit like a superhero trading the cape and cowl for civilian clothes.

While the findings are only preliminary, Matilsky said, they may line up with real observations of the sun dating back to the 19th century.

He added that the existence of such a solar alter-ego could provide physicists with new clues to the processes that govern the sun's internal clock--a cycle in which the sun switches from periods of high activity to low activity about once every 11 years.

"We don't know what is setting the cycle period for the sun or why some cycles are more violent than others," said Matilsky, a graduate student at JILA. "Our ultimate goal is to map what we're seeing in the model to the sun's surface so that we can then make predictions."

He will present the team's findings at a press briefing today at the 234th meeting of the American Astronomical Society in St. Louis.

The study takes a deep look at a phenomenon that scientists call the solar "dynamo," essentially a concentration of the star's magnetic energy. This dynamo is formed by the spinning and twisting of the hot gases inside the sun and can have big impacts--an especially active solar dynamo can generate large numbers of sunspots and solar flares, or globs of energy that blast out from the surface.

But that dynamo isn't easy to study, Matilsky said. That's because it mainly forms and evolves within the sun's interior, far out of range of most scientific instruments.

"We can't dive into the interior, which makes the sun's internal magnetism a few steps removed from real observations," he said.

To get around that limitation, many solar physicists use massive supercomputers to try to recreate what's occurring inside the sun.

Matilsky and Toomre's simulation examines activity in the outer third of that interior, which Matilsky likens to "a spherical pot of boiling water."

And, he said, this model delivered some interesting results. When the researchers ran their simulation, they first found that the solar dynamo formed to the north and south of the sun's equator. Following a regular cycle, that dynamo moved toward the equator and stopped, then reset in close agreement with actual observations of the sun.

But that regular churn wasn't the whole picture. Roughly twice every 100 years, the simulated sun did something different.

In those strange cases, the solar dynamo didn't follow that same cycle but, instead, clustered in one hemisphere over the other.

"That additional dynamo cycle would kind of wander," Matilsky said. "It would stay in one hemisphere over a few cycles, then move into the other one. Eventually, the solar dynamo would return to its original state."

That pattern could be a fluke of the model, Matilsky said, but it might also point to real, and previously unknown, behavior of the solar dynamo. He added that astronomers have, on rare occasions, seen sun spots congregating in one hemisphere of the sun more than the other, an observation that matches the CU Boulder team's findings.

Matilsky said that the group will need to develop its model further to see if the dual dynamo pans out. But he said that the team's results could, one day, help to explain the cause of the peaks and dips in the sun's activity--patterns that have huge implications for climate and technological societies on Earth.

"It gives us clues to how the sun might shut off its dynamo and turn itself back on again," he said.
-end-


University of Colorado at Boulder

Related Energy Articles:

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.
Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.
How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
Putting that free energy around you to good use with minuscule energy harvesters
Scientists at Tokyo Tech developed a micro-electromechanical energy harvester that allows for more flexibility in design, which is crucial for future IoT applications.
More Energy News and Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.