Nav: Home

Why Noah's ark won't work

June 11, 2019

A Noah's Ark strategy will fail. In the roughest sense, that's the conclusion of a first-of-its-kind study that illuminates which marine species may have the ability to survive in a world where temperatures are rising and oceans are becoming acidic.

Two-by-two, or even moderately sized, remnants may have little chance to persist on a climate-changed planet. Instead, for many species, "we'll need large populations," says Melissa Pespeni a biologist at the University of Vermont who led the new research examining how hundreds of thousands of sea urchin larvae responded to experiments where their seawater was made either moderately or extremely acidic.

The study was published on June 11, 2019, in the Proceedings of the Royal Society B.

RARE RELIEF

Pespeni and her team were surprised to discover that rare variation in the DNA of a small minority of the urchins were highly useful for survival. These rare genetic variants are "a bit like having one winter coat among fifty lightweight jackets when the weather hits twenty below in Vermont," Pespeni says. "It's that coat that lets you survive." When the water conditions were made extremely acidic, these rare variants increased in frequency in the larvae. These are the genes that let the next generation of urchins alter how various proteins function--like the ones they use to make their hard-but-easily-dissolved shells and manage the acidity in their cells.

But to maintain these rare variants in the population--plus other needed genetic variation that is more common and allows for response to a range of acid levels in the water--requires many individuals.

"The bigger the population, the more rare variation you'll have," says Reid Brennan, a post-doctoral researcher in Pespeni's UVM lab and lead author on the new study. "If we reduce population sizes, then we're going to have less fodder for evolution--and less chance to have the rare genetic variation that might be beneficial."

In other words, some organisms might persist in a climate-changed world because they're able to change their physiology--think of sweating more; some will be able to migrate, perhaps farther north or upslope. But for many others, their only hope is to evolve--rescued by the potential for change that lies waiting in rare stretches of DNA.

RAPID ADAPTATION

The purple sea urchins the UVM team studied in their Vermont lab are part of natural populations that stretch from Baja, California to Alaska. Found in rocky reefs and kelp forests, these prickly creatures are a favorite snack of sea otters--and a key species in shaping life in the intertidal and subtidal zones. Because of their huge numbers, geographic range, and the varying conditions they live in, the urchins have high "standing genetic variation," the scientists note. This makes purple urchins likely survivors in the harsh future of an acidified ocean--and good candidates for understanding how marine creatures may adapt to rapidly changing conditions.

It is well understood that rising average global temperatures are a fundamental driver of the imminent extinction faced by a million or more species--as a recent UN biodiversity report notes. But it's not just rising averages that matter. It may be the hottest--or most acidic--moments that test an organism's limits and control its survival. And, as the UVM team writes, "the genetic mechanisms that allow rapid adaptation to extreme conditions have been rarely explored."

CURRENCY IN THE CURRENT SEA

The new study used an innovative "single-generation selection" experiment that began with twenty-five wild-caught adult urchins. Each female produced about 200,000 eggs from which the scientists were able extract DNA out of pools of about 20,000 surviving larvae that were living in differing water conditions. This very large number of individuals gave the scientists a clear view that purple urchins possess a genetic heritage that lets them adapt to extremely acidic ocean water. "This species of sea urchin is going to be okay in the short term. They can respond to these low pH conditions and have the needed genetic variation to evolve," says UVM's Reid Brennan. "So long as we do our part to protect their habitats and keep their populations large."

But coming through the ferocious challenge of rapid climate change may come at a high cost. "It's hopeful that evolution happens--and it's surprising and exciting that these rare variants play such a powerful role," says Melissa Pespeni, an assistant professor in UVM's biology department and expert on ocean ecosystems. "This discovery has important implications for long-term species persistence. These rare variants are a kind of currency that urchins have to spend," she says. "But they can only spend it once."
-end-


University of Vermont

Related Climate Articles:

Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
Incubating climate change
A group of James Cook University scientists led by Emeritus Professor Ross Alford has designed and built an inexpensive incubator that could boost research into how animals and plants will be affected by climate change.
And the Oscar goes to ... climate change
New research finds that Tweets and Google searches about climate change set new record highs after Leonardo DiCaprio's Academy Awards acceptance speech, suggesting celebrity advocacy for social issues on a big stage can motivate popular engagement.
Cod and climate
Researchers use the North Atlantic Oscillation as a predictive tool for managing an iconic fishery.
What hibernating toads tell us about climate
The ability to predict when toads come out of hibernation in southern Canada could provide valuable insights into the future effects of climate change on a range of animals and plants.
Maryland climate and health report identifies state's vulnerabilities to climate change
A new report by the University of Maryland School of Public Health and the Maryland Department of Health and Mental Hygiene details the impacts of climate change on the health of Marylanders now and in the future.

Related Climate Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...