Could we run out of sand? Scientists adjust how grains are measured

June 11, 2020

Humans see sand as an infinite resource. We are astounded to discover there are more stars in the universe than grains of sand on our beaches.

Yet in some areas, sand is in short supply and scientists have discovered the way we keep track of this resource has given us misleading information.

In many instances, we have simply been measuring sand the wrong way.

"Not all sand is the same," said

However, carbonate sands derived from shells, corals and the skeletons of marine animals tend to be elliptical, less dense and have more holes and edges. The new research has taken this into account with astounding results, finding that existing models underestimate the surface area of carbonate sands by 35 percent.

Published today in the Nature journal
, Associate Professor Vila-Concejo's team has shown that standard engineering models also overestimate transport of carbonate sands on the seafloor by more than 20 percent and underestimate suspended transport of this sand by at least 10 percent.

"This means we are not accounting for sand correctly," she said. "While this has impact on construction and manufacturing, it could also have a big effect on the management of coastal areas impacted by climate change."

Sand is used throughout industry. From the glass in your mobile phone to base for roads, sand is used across our economy. In fact, sand and gravel are the most extracted materials on the planet, exceeding that of fossil fuels.

Nature

Associate Professor Vila-Concejo said: "While sand wars are not happening in Australia, we do have areas with chronic coastal erosion and sand loss such as at Jimmys Beach in Port Stephens."

NEW MATHEMATICAL MODELS

Her team took carbonate sand from near Heron Island on the Great Barrier Reef and observed how it responded under experimental conditions. Based on these observations, they developed new mathematical equations that much better predict how carbonate sands move.

The team confirmed this by applying their equations to existing data on carbonate sand movement accumulated over six years from observations off the north coast of Oahu, Hawaii.

"Keeping track of carbonate sand will become increasingly important," said

"If islands and atolls are at risk from erosion caused by sea-level rise, it will be vital to understand how the sands protecting them will respond to the ocean currents, waves and high-energy sea swells battering them."

He said these new equations are likely to be used to update all sediment transport models. "This will include evaluating beach and atoll responses to ocean hydrodynamics in carbonate-sand-rich regions, some of which are most vulnerable to the impacts of climate change," Dr Salles said.

At present, coastal engineering uses models based on siliciclastic sands. Associate Professor Vila-Concejo hopes that the models her team has developed can be used to improve management of coastal areas.

"This means we can develop a far more accurate picture of how changing oceans will affect marine ecosystems where carbonate sands are dominant," Associate Professor Vila-Concejo said.

"Understanding how, why and when sediments move is crucial to managing and predicting the effects of climate change and our new work will help in the development of mitigation and adaptation strategies."
-end-
DOWNLOAD the research and photos

INTERVIEWS

Associate Professor Ana Vila-Concejo

ana.vilaconcejo@sydney.edu.au | +61 432 077 760

School of Geosciences, The University of Sydney

MEDIA ENQUIRIES

Marcus Strom | marcus.strom@sydney.edu.au | +61 423 982 485

DECLARATION

Data for the modelling was provided by
University of Sydney

Related Universe Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

Gravity causes homogeneity of the universe
Gravity can accelerate the homogenization of space-time as the universe evolves.

Seeing the universe through new lenses
A new study by an international team of scientists revealed hundreds of new strong gravitational lensing candidates based on a deep dive into data collected for a US Department of Energy-supported telescope project in Arizona called the Dark Energy Spectroscopic Instrument.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

This is how a 'fuzzy' universe may have looked
Scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter.

And then there was light: looking for the first stars in the Universe
Astronomers are closing in on a signal that has been travelling across the Universe for 12 billion years, bringing them nearer to understanding the life and death of the very earliest stars.

AI learns to model our Universe
An international team has used AI to create a 3D simulation of the Universe.

New voyage to the universe from DESHIMA
Researchers in Japan and the Netherlands jointly developed an originative radio receiver DESHIMA (Deep Spectroscopic High-redshift Mapper) and successfully obtained the first spectra and images with it.

A peek at the birth of the universe
The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth.

Exactly how fast is the universe expanding?
The collision of two neutron stars (GW170817) flung out an extraordinary fireball of material and energy that is allowing a Princeton-led team of astrophysicists to calculate a more precise value for the Hubble constant, the speed of the universe's expansion.

Read More: Universe News and Universe Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.