New insight into the Great Dying

June 11, 2020

A new study shows for the first time that the collapse of terrestrial ecosystems during Earth's most deadly mass extinction event was directly responsible for disrupting ocean chemistry.

The international study, led by the University of Leeds, highlights the importance of understanding the inter-connectedness of ecosystems as our modern environment struggles with the devastating effects of a rapidly warming planet.

The Permian-Triassic extinction, also known as the Great Dying, took place roughly 252 million years ago. It saw the loss of an estimated 90% of marine species, 70% of land species, widespread loss of plant diversity and extreme soil erosion.

While the exact cause of the terrestrial mass extinction is still debated, it is becoming apparent that the terrestrial ecosystems were wiped out prior to the marine ecosystems. However, until now it was unclear if or how the terrestrial extinction consequently impacted the chemistry of Earth's ancient oceans.

The team built a computer model that mapped chemical changes in Earth's oceans during the period of the Permian-Triassic extinction. The model tracks the cycling of the poisonous element mercury, which is emitted from volcanoes but also gets incorporated into living organisms. By tracing both the mercury and carbon cycles, and comparing to measurements in ancient rocks, the team were able to separate out biological and volcanic events.

This revealed that a massive collapse of terrestrial ecosystems cascaded organic matter, nutrients, and other biologically-important elements into the marine system.

While further research is needed to understand the exact effect this had on marine life, the fact that many marine species rely on chemical stability in their environment means that it is unlikely it was without consequence.

Study co-author Dr Jacopo Dal Corso, who conceived the study during a research placement at Leeds said: "In this study we show that during the Permian-Triassic transition, roughly. 252 million years ago, the widespread collapse of the terrestrial ecosystems caused sudden changes in marine chemistry.

"This likely played a central role in triggering the most severe known marine extinction in Earth's history. This deep-time example shows how important the terrestrial reservoir is in regulating global biogeochemical cycles and calls for the greater conservation of these ecosystems."

Study co-author Dr Benjamin Mills, from the School of Earth and Environment at Leeds said: "252 million years ago the effects of mass plant death and soil oxidation appear to have seriously altered the chemistry of the oceans. This is an uncomfortable parallel with our own human-driven land use change, and we too are transferring large quantities of nutrients and other chemicals to the oceans.

"As we look to re-start the world's economies in the wake of the current pandemic, protecting our life-sustaining ecosystems should be a priority."
-end-
The paper: Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse is published in Nature Communications 11th June 2020. (DOI: 10.1038/s41467-020-16725-4)

For additional information contact University of Leeds press office Anna Harrison at a.harrison@leeds.ac.uk

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 38,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities. The University plays a significant role in the Turing, Rosalind Franklin and Royce Institutes.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2020.

The University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching. http://www.leeds.ac.uk

University of Leeds

Related Mercury Articles from Brightsurf:

Mercury's 400 C heat may help it make its own ice
Despite Mercury's 400 C daytime heat, there is ice at its caps, and now a study shows how that Vulcan scorch probably helps the planet closest to the sun make some of that ice.

New potential cause of Minamata mercury poisoning identified
One of the world's most horrific environmental disasters--the 1950 and 60s mercury poisoning in Minamata, Japan--may have been caused by a previously unstudied form of mercury discharged directly from a chemical factory, research by the University of Saskatchewan (USask) has found.

New nanomaterial to replace mercury
Ultraviolet light is used to kill bacteria and viruses, but UV lamps contain toxic mercury.

Wildfire ash could trap mercury
In the summers of 2017 and 2018, heat waves and drought conditions spawned hundreds of wildfires in the western US and in November, two more devastating wildfires broke out in California, scorching thousands of acres of forest, destroying homes and even claiming lives.

Removing toxic mercury from contaminated water
Water which has been contaminated with mercury and other toxic heavy metals is a major cause of environmental damage and health problems worldwide.

Fish can detox too -- but not so well, when it comes to mercury
By examining the tissues at a subcellular level, the researchers discovered yelloweye rockfish were able to immobilize several potentially toxic elements within their liver tissues (cadmium, lead, and arsenic) thus preventing them from interacting with sensitive parts of the cell.

Chemists disproved the universal nature of the mercury test
The mercury test of catalysts that has been used and considered universal for 100 years, turned out to be ambiguous.

Mercury rising: Are the fish we eat toxic?
Canadian researchers say industrial sea fishing may be exposing people in coastal and island nations to excessively high levels of mercury.

New estimates of Mercury's thin, dense crust
Michael Sori, a planetary scientist at the University of Arizona, used careful mathematical calculations to determine the density of Mercury's crust, which is thinner than anyone thought.

Understanding Mercury's magnetic tail
Theoretical physicists used simulations to explain the unusual readings collected in 2009 by the Mercury Surface, Space Environment, Geochemistry, and Ranging mission.

Read More: Mercury News and Mercury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.