Nav: Home

Improving the operation and performance of Wi-Fi networks for the 5G/6G ecosystem

June 11, 2020

An article published in the advanced online edition of the journal Computer Communications shows that the use of machine learning can improve the operation and performance of the Wi-Fi networks of the future, those of the 5G/6G ecosystem. The research was conducted by Marc Carrascosa and Boris Bellalta, researchers with the Wireless Networking Research Group at the UPF Department of Information and Communication Technologies (DTIC).

The authors focus their study on how to improve the association of Wi-Fi network users consisting of multiple access points, in order to be able to serve a large number of users. This type of Wi-Fi network is present in business and academic environments or in public spaces in cities (streets, parks, libraries, etc.).

"In this study, we look at how stations (PCs, tablets, mobile phones, etc.) may themselves decide dynamically which of the different access points available in their coverage area is offering the best service for their needs using Reinforcement Learning techniques", Carrascosa and Bellalta explain.

Each station takes decisions dynamically

In their proposal, each station is independent and takes decisions dynamically based on the quality of service offered by the Wi-Fi network over time, i.e., the station autonomously learns how the Wi-Fi network is behaving, identifying the impact of its own actions (choosing one or another access point) on the benefits received.

"For this learning, as a basis we use an algorithm called ε-greedy, which alternates between choosing access points at random to obtain information (exploring), and choosing the best access points used based on this accumulated information (exploiting)", the authors suggest. "Thus, the more information, the better decisions we take, considering, however, that there is a compromise between the time a station can devote to learning and the time it disposes of to use what it has learned successfully", they add.

A new algorithm that shortens station learning time

To solve the limitations of the ε-greedy algorithm, such as could be the high learning time, in their paper the authors propose a new algorithm that they call ε-sticky, which includes the concept of emotional attachment. It works so that once the station has found an access point that provides the service requested, even if it ceases to do so later, it does not immediately discard it to look for another new one again in the hope that in the future it might give the same good service.

With this new proposal, service disruptions to users and network instability are reduced, which also benefits stations that have not yet found an access point that offers the required service. "Despite not being the goal of our work, the extrapolation to humans' social behaviour is quite direct, as is the interpretation in this field of the results we present", Carrascosa and Bellalta comment.

"In the article, we study the impact of this change and how it allows us to get better results for the problem of Wi-Fi association. The ultimate goal is to show the effectiveness of machine learning techniques to solve problems in Wi-Fi networks that are not easily solved by preconfigured mechanisms. With our results, we also show that not all stations need to make use of these techniques, since if only a few stations implement the new algorithm, the entire network benefits", the authors uphold.
-end-


Universitat Pompeu Fabra - Barcelona

Related Learning Articles:

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.
Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.
Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.
How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.
School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.
Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.
Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.
Sleep readies synapses for learning
Synapses in the hippocampus are larger and stronger after sleep deprivation, according to new research in mice published in JNeurosci.
More Learning News and Learning Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.