Tiny pump builds polyrotaxanes with precision

June 11, 2020

EVANSTON, Ill. -- Northwestern University researchers have developed the most precise way to build polyrotaxanes, a mechanically locked polymer for slide-ring gels, battery electrode materials and drug-delivery platforms.

A necklace-like molecule made with rings threaded onto a polymer string, polyrotaxanes are notoriously difficult to construct. A new method from the laboratory of Nobel Prize-winning chemist Sir Fraser Stoddart uses two artificial molecular pumps to install rings onto each end of a polymer string. The tiny pumps allow researchers to control precisely how many rings pass onto the polymer.

"These polyrotaxanes have never before been made with such precision," Stoddart said. "Without the ability to define accurately the polymer's structure, you cannot fine-tune the material's overall properties."

The paper will be published on Friday, June 12 in the journal Science.

Stoddart is the Board of Trustees Professor in Northwestern's Weinberg College of Arts and Sciences. Yunyan Qiu, a postdoctoral fellow in Stoddart's lab, is the paper's first author.

Researchers have studied polyrotaxanes for years, fascinated by their stretchy mechanical properties and potential of materials containing them to self-heal. But, until now, it was impossible to build these promising polymers with a precise number of rings.

"Traditionally, researchers mix the rings and polymers together, and they form inclusion complexes by noncovalent interactions," Qiu said. "But you couldn't know how many rings were threaded until you analyzed it later using nuclear magnetic resonance microscopy. People could roughly control the percentage of rings to some extent, but it was still an estimate."

To overcome this challenge, the Northwestern researchers used an artificial molecular pump, which was developed in Stoddart's laboratory in 2015. The first of its kind, the pump draws power from redox reactions, driving molecules from a low-energy state to a high-energy state.

To build polyrotaxanes, the pump employs repetitive redox reactions either chemically or electrochemically, in which a molecule gains or loses electrons. Initially, the pump -- situated at both ends of the polymer string -- and the rings are both positively charged and, thus, repel each other.

Upon injecting electrons, units in both pumps and rings change from dicationic to radical cationic states. Suddenly, the rings are attracted to the pump heads and thread onto both ends of the polymer string. Subsequent oxidation removes the electrons, restoring the positive charges. The rings try to escape but cannot due to the positively charged units at both end of the polymer string. Mild heating allows the ring to pass over a speed bump onto the polymer chain. The pump repeats this process to recruit rings in pairs onto the polymer string.

"We can recruit up to 10 rings onto the thread," Qiu said. "But we believe we're only limited by the length of the chosen polymer chain. If we double the length of the polymer, we can double the number of rings."

The team also believes that, with this method, they could use many different types of polymers to create untraditional polyrotaxanes with unusual properties.

"I'm very excited about this research," Stoddart said. "I put it up there with some of the best papers I've been associated with during the past 50 years."
Stoddart is a member of the International Institute of Nanotechnology and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University,

The study, "A precises polyrotaxane synthesizer," was supported by the National Institutes of Health (grant number R01GM128037).

Northwestern University

Related Electrons Articles from Brightsurf:

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.