Research reveals function of genetic pathway for reproductive fitness in flowering plants

June 11, 2020

p>ST. LOUIS, MO, June 11, 2020 - Small RNAs are key regulators involved in plant growth and development. Two groups of small RNAs are abundant during development of pollen in the anthers - a critical process for reproductive success. A research collaboration has demonstrated the function of a genetic pathway for anther development, with this pathway proven in 2019 work to be present widely in the flowering plants that evolved over 200 million years ago. The research team was led by Blake Meyers, Ph.D., member, Donald Danforth Plant Science Center and professor, Division of Plant Sciences, University of Missouri, and Virginia Walbot, Ph.D., Professor of Biology, Stanford University. Their findings, "Dicer-like 5deficiency confers temperature-sensitive male sterility in maize" were published in the journal, Nature Communications.

Unexpectedly, their research uncovered an environmentally sensitive male sterile phenotype. By using mutants and knocking out one of the pathways, the research team produced plants that failed to make pollen, but when they lowered the temperature, they found they could recover full male fertility. This ability to turn on or turn off pollen production in different conditions could be useful for seed production. The team could also attribute the function of this pathway in anther development, an observation previously missing but important. These results are important companions to a previously published discovery, which described the evolutionary distribution of the pathway across flowering plants, "24-nt reproductive phasiRNAs are broadly present in angiosperms,"also published in the journal Nature Communications.

"Putting these two discoveries together, we can understand the role these molecules play is important for full male fertility in maize, plus, the pathway first evolved with flowering plants," said Meyers. "Understanding the genetic mechanisms by which flowers develop is important for improving crop yields and breeding better varieties, particularly for making the high-yielding hybrid crops that support modern agriculture."

The research team will continue to work to understand why there is an environmentally-sensitive response to changes in this pathway, and what exactly is the molecular mechanism that leads to this male sterility in the absence of this small RNA pathway. Work in a separately funded project is examining if modulation of this pathway could be used to regulate pollen development in other crops, for the improvement of seed production and crop yield.

The authors include co-first authors, Chong Teng, Ph.D., postdoctoral associate in the Meyers lab and Han Zhang, Ph.D. former postdoctoral associate in the Walbot lab. Also contributing were Kun Huang, Ph.D., postdoctoral associate in the Meyers lab, and Reza Hammond, Ph.D., former graduate student in the Meyers lab. The work is funded by the National Science Foundation.

About The Donald Danforth Plant Science Center


Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Center's work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at @DanforthCenter.

Donald Danforth Plant Science Center

Related Flowering Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

Shifts in flowering phases of plants due to reduced insect density
A research group of the University of Jena and the iDiv has discovered that insects have a decisive influence on the biodiversity and flowering phases of plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

Dodder uses the flowering signal of its host plant to flower
Researchers from the Chinese Academy of Sciences and the Max Planck Institute for Chemical Ecology have investigated how the parasitic dodder Cuscuta australis controls flower formation.

Research reveals function of genetic pathway for reproductive fitness in flowering plants
A research collaboration has demonstrated the function of a genetic pathway for anther development, with this pathway proven in 2019 work to be present widely in the flowering plants that evolved over 200 million years ago.

Bumblebees speed up flowering
When pollen is in short supply, bumblebees damage plant leaves in a way that accelerates flower production, as an ETH research team headed up by Consuelo De Moraes and Mark Mescher has demonstrated.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

Bumble bee disease, reproduction shaped by flowering strip plants
Flowering strips -- plants used to augment bee foraging habitats -- can help increase bee reproduction but may also increase pathogen infection rates.

Study reveals important flowering plants for city-dwelling honey bees
Trees, shrubs and woody vines are among the top food sources for honey bees in urban environments, according to an international team of researchers.

Water lily genome expands picture of the early evolution of flowering plants
The newly reported genome sequence of a water lily sheds light on the early evolution of angiosperms, the group of all flowering plants.

Read More: Flowering Plants News and Flowering Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.