Self-driving cars that recognize free space can better detect objects

June 11, 2020

PITTSBURGH--It's important that self-driving cars quickly detect other cars or pedestrians sharing the road. Researchers at Carnegie Mellon University have shown that they can significantly improve detection accuracy by helping the vehicle also recognize what it doesn't see.

Empty space, that is.

The very fact that objects in your sight may obscure your view of things that lie further ahead is blindingly obvious to people. But Peiyun Hu, a Ph.D. student in CMU's Robotics Institute, said that's not how self-driving cars typically reason about objects around them.

Rather, they use 3D data from lidar to represent objects as a point cloud and then try to match those point clouds to a library of 3D representations of objects. The problem, Hu said, is that the 3D data from the vehicle's lidar isn't really 3D -- the sensor can't see the occluded parts of an object, and current algorithms don't reason about such occlusions.

"Perception systems need to know their unknowns," Hu observed.

Hu's work enables a self-driving car's perception systems to consider visibility as it reasons about what its sensors are seeing. In fact, reasoning about visibility is already used when companies build digital maps.

"Map-building fundamentally reasons about what's empty space and what's occupied," said Deva Ramanan, an associate professor of robotics and director of the CMU Argo AI Center for Autonomous Vehicle Research. "But that doesn't always occur for live, on-the-fly processing of obstacles moving at traffic speeds."

In research to be presented at the Computer Vision and Pattern Recognition (CVPR) conference, which will be held virtually June 13-19, Hu and his colleagues borrow techniques from map-making to help the system reason about visibility when trying to recognize objects.

When tested against a standard benchmark, the CMU method outperformed the previous top-performing technique, improving detection by 10.7% for cars, 5.3% for pedestrians, 7.4% for trucks, 18.4% for buses and 16.7% for trailers.

One reason previous systems may not have taken visibility into account is a concern about computation time. But Hu said his team found that was not a problem: their method takes just 24 milliseconds to run. (For comparison, each sweep of the lidar is 100 milliseconds.)
In addition to Hu and Ramanan, the research team included Jason Ziglar of Argo AI and David Held, assistant professor of robotics. The Argo AI Center supported this research.

Carnegie Mellon University

Related Computer Vision Articles from Brightsurf:

Computer vision predicts congenital adrenal hyperplasia
Using computer vision, researchers have discovered strong correlations between facial morphology and congenital adrenal hyperplasia (CAH), a life-threatening genetic condition of the adrenal glands and one of the most common forms of adrenal insufficiency in children.

Computer vision app allows easier monitoring of diabetes
A computer vision technology developed by University of Cambridge engineers has now been developed into a free mobile phone app for regular monitoring of glucose levels in people with diabetes.

Computer vision helps find binding sites in drug targets
Scientists from the iMolecule group at Skoltech developed BiteNet, a machine learning (ML) algorithm that helps find drug binding sites, i.e. potential drug targets, in proteins.

Tool helps clear biases from computer vision
Researchers at Princeton University have developed a tool that flags potential biases in sets of images used to train artificial intelligence (AI) systems.

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

School-based vision screening programs found 1 in 10 kids had vision problems
A school-based vision screening program in kindergarten, shown to be effective at identifying untreated vision problems in 1 in 10 students, could be useful to implement widely in diverse communities, according to new research in CMAJ (Canadian Medical Association Journal)

Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
Researchers have developed new software that can be integrated with existing hardware to enable people using robotic prosthetics or exoskeletons to walk in a safer, more natural manner on different types of terrain.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

Computer vision helps SLAC scientists study lithium ion batteries
New machine learning methods bring insights into how lithium ion batteries degrade, and show it's more complicated than many thought.

A new model of vision
MIT researchers have developed a computer model of face processing that could reveal how the brain produces richly detailed visual representations so quickly.

Read More: Computer Vision News and Computer Vision Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to