Nav: Home

Transgenic Rice Plants Resist Insects, Drought And Salt Damage

June 11, 1996

ITHACA, N.Y. -- Biologists at Cornell and Washington universities have genetically engineered and successfully field tested rice plants that resist some of the most destructive insects as well as salt and drought damage. Technology for the transgenic rice plants, which incorporates genes from potato plants to resist insect damage and genes from barley plants to make them salt-and drought-tolerant, will be given to developing countries under provisions of a Rockefeller Foundation grant. Rights to the technology, which potentially can reduce crops losses by billions of dollars each year, will be sold in developed countries such as the United States and Japan.

Development of the insect-resistant rice, which was reported in the April 1996 issue of the journal Nature Biotechnology, marks the first time that useful genes were successfully transferred from a dicotyledonous plant, the potato, to rice, a monocotyedonous plant.

The potato genes cause rice plants to produce a protein that interferes with insects' digestive process whenever the plant is wounded by insects. Thus, insects such as the pink stem borer eat less, grow less quickly, and plant damage is reduced to tolerable levels. A barley gene enables rice plants to produce a protein that makes them salt- and drought-resistant so that they grow in saline conditions and recover quickly from dry conditions.

"These are capabilities that wild plants develop naturally over years of evolution, but we can't afford to wait for domestic rice varieties to evolve resistance to insect pests or drought," said Ray Wu, Cornell professor of biochemistry, molecular and cell biology, and leader of the international team that spliced other plant species' genes into rice. "Hundreds of millions of hungry people need this rice now, and the crop losses to insects, drought and increasing salinization of soils are devastating."

According to Gary Toenniessen, deputy director for agricultural sciences at the Rockefeller Foundation, Wu and his colleagues "have made a significant contribution toward meeting world food requirements by demonstrating that biotechnology can be used to enhance the rice plant's ability to defend itself against pests and stresses, without the use of expensive and sometimes detrimental inputs such as pesticides."

Development of transgenic rice with salt and drought tolerance was reported in the March 1996 issue of the journal Plant Physiology by Wu and by Deping Xu, Xiaolan Duan and Baiwang Wang, all researchers in Cornell's Section of Biochemistry, Molecular and Cell Biology, and by Bimei Hong, Tuan-Hua David Ho, researchers in Washington University's Department of Biology. Reporting their development of insect-resistant transgenic rice plants were Wu, Duan and Xu, as well as Xigang Li and Mahmoud Abo-El-Saad, both Cornell researchers, and Qingzhang Xue, a biologist at Zhejiang Agricultural University in Hangzhou, China.

The transgenic rice was developed with support from the Rockefeller Foundation's International Rice Biotechnology Program. That program funds some 40 laboratories in developed countries and another 80 in developing countries where scientists are trained to help their countries become more agriculturally self-sufficient.

Transgenic plants from both technologies are in advanced stages of testing, with large field tests scheduled this year in China. Commercial production of seed is about two years away, Wu estimated, but several companies have already signed licensing agreements to use the insect-resistance gene technology in other crops, including corn and wheat.

The genes from other plant species that made the transgenic rice were first introduced to cells of three Japonica rice varieties with the Biolistic particle delivery system, the "gene gun" invented at Cornell by plant biologist John Sanford and electrical engineer Edward Wolf. Cornell Research Foundation has applied for patents on the transgenic rice technologies.

Now that molecular biologists know how to transfer the insect-resistance gene to rice, Wu predicted, it should work against any lepidopteran (or caterpillar type) insect that eats plants in the larval stage -- and that is about 70 percent of the known insect pests worldwide. Among crops damaged by lepidopteran insects are sorghum, oats, rye, barley and wheat, as well as corn and rice.

In the case of the highly destructive rice pest, the pink stem borer, the insect enters the plant near the base and eats its way to the top of the stem where the rice grains form, either killing the plant or greatly reducing its yield. Because the transgenic plants do not produce an insect toxin -- just a proteinase inhibitor that disrupts insects' digestion -- the strategy is not 100 percent effective in eliminating insects, the Cornell scientists noted. Greater insect resistance can be easily achieved by adding genes that cause the plant to produce the Bt (Bacillus thuringiensis) toxin, Wu said.

Anticipating potential objections to the genetically engineered rice plants, Wu said that the potato proteinase inhibitor has no effect on humans, and it is present in raw the form of a related plant -- tomatoes. Nor are insects themselves likely to ever develop resistance to the proteinase inhibitor, as they eventually do to many toxins and chemical pesticides, because the protein has a different type of action on their systems, he said.

And genes for the insect-, salt- and drought-resistant rice should stay where the genetic engineers put them and not escape to produce a super weed, Wu said, because rice is a self-pollinating plant and few other plants can cross-pollinate with it.

The Rockefeller Foundation's Toenniessen observed that undernourishment already is a problem in most rice-dependent countries of Asia. "Populations are projected to continue growing for at least 30 years, and essentially no land is left for agricultural expansion," he said. "Discoveries such as those made at Cornell reduce crop losses and help farmers to produce more food on the same land while causing less environmental damage."

Cornell University

Related Drought Articles:

What does drought mean for endangered California salmon?
Droughts threatens California's endangered salmon population -- but pools that serve as drought refuges could make the difference between life and death for these vulnerable fish.
With shrinking snowpack, drought predictability melting away
New research from CU Boulder suggests that during the 21st century, our ability to predict drought using snow will literally melt away.
An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.
Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas
Mapping the effects of drought on vulnerable populations
The greater frequency of droughts, combined with underlying economic, social, and environmental risks means that dry spells have an increasingly destructive impact on vulnerable populations, and particularly on children in the developing world.
Asia's glaciers provide buffer against drought
A new study to assess the contribution that Asia's high mountain glaciers make to relieving water stress in the region is published this week (May 29, 2019) in the journal Nature.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
A faster, more accurate way to monitor drought
A new drought monitoring method developed at Duke University allows scientists to identify the onset of drought sooner, meaning conservation or remediation measures could be put into place sooner.
How does the Amazon rain forest cope with drought?
The Amazon rain forest isn't necessarily a place that many would associate with a drought, yet prolonged dry spells are projected to become more prevalent and severe because of climate change.
Trees change inside as drought persists
James Cook University scientists in Australia have found that trees change their anatomy in response to prolonged drought.
More Drought News and Drought Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.