We are all mutants

June 12, 2011

Each one of us receives approximately 60 new mutations in our genome from our parents.

This striking value is reported in the first-ever direct measure of new mutations coming from mother and father in whole human genomes published today.

For the first time, researchers have been able to answer the questions: how many new mutations does a child have and did most of them come from mum or dad? The researchers measured directly the numbers of mutations in two families, using whole genome sequences from the 1000 Genomes Project. The results also reveal that human genomes, like all genomes, are changed by the forces of mutation: our DNA is altered by differences in its code from that of our parents. Mutations that occur in sperm or egg cells will be 'new' mutations not seen in our parents.

Although most of our variety comes from reshuffling of genes from our parents, new mutations are the ultimate source from which new variation is drawn. Finding new mutations is extremely technically challenging as, on average, only 1 in every 100 million letters of DNA is altered each generation.

Previous measures of the mutation rate in humans has either averaged across both sexes or measured over several generations. There has been no measure of the new mutations passed from a specific parent to a child among multiple individuals or families.

"We human geneticists have theorised that mutation rates might be different between the sexes or between people," explains Dr Matt Hurles, Senior Group Leader at the Wellcome Trust Sanger Institute, who co-led the study with scientists at Montreal and Boston, "We know now that, in some families, most mutations might arise from the mother, in others most will arise from the father. This is a surprise: many people expected that in all families most mutations would come from the father, due to the additional number of times that the genome needs to be copied to make a sperm, as opposed to an egg."

Professor Philip Awadalla,who also co-led the project and is at University of Montreal explained: "Today, we have been able to test previous theories through new developments in experimental technologies and our analytical algorithms. This has allowed us to find these new mutations, which are like very small needles in a very large haystack."

The unexpected findings came from a careful study of two families consisting of both parents and one child. The researchers looked for new mutations present in the DNA from the children that were absent from their parents' genomes. They looked at almost 6000 possible mutations in the genome sequences.

They sorted the mutations into those that occurred during the production of sperm or eggs of the parents and those that may have occurred during the life of the child: it is the mutation rate in sperm or eggs that is important in evolution. Remarkably, in one family 92 per cent of the mutations derived from the father, whereas in the other family only 36 per cent were from the father.

This fascinating result had not been anticipated, and it raises as many questions as it answers. In each case, the team looked at a single child and so cannot tell from this first study whether the variation in numbers of new mutations is the result of differences in mutation processes between parents, or differences between individual sperm and eggs within a parent.

Using the new techniques and algorithms, the team can look at more families to answer these new riddles, and address such issues as the impact of parental age and different environment exposures on rates of new mutations, which might concern any would-be parent.

Equally remarkably, the number of mutations passed on from a parent to a child varied between parents by as much as tenfold. A person with a high natural mutation rate might be at greater risk of misdiagnosis of a genetic disease because the samples used for diagnosis might contain mutations that are not present in other cells in their body: most of their cells would be unaffected.
-end-
Notes to Editors

Publication Details

Conrad DF et al. (2011) Variation in genome-wide mutation rates within and between human families. Nature Genetics, published online 12 June 2011
doi:1038/ng.856

Funding

This work was supported by Wellcome Trust, the Ministry of Development, Exploration and Innovation in Quebec and Genome Quebec.

Participating CentresThe Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Contact details

Don Powell Press Officer
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Wellcome Trust Sanger Institute

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.