Study: Use of prefabricated blood vessels may revolutionize root canals

June 12, 2017

While root canals are effective in saving a tooth that has become infected or decayed, this age-old procedure may cause teeth to become brittle and susceptible to fracture over time. Now researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for patients and clinicians.

Their findings will publish online in the journal Scientific Reports on June 12, 2017.

More than 15 million root canals are conducted annually in the United States. The current procedure involves removing infected dental tissues and replacing them with synthetic biomaterials covered by a protective crown.

"This process eliminates the tooth's blood and nerve supply, rendering it lifeless and void of any biological response or defense mechanism. Without this functionality, adult teeth may be lost much sooner, which can result in much greater concerns, such as the need for dentures or dental implants," says principal investigator Luiz Bertassoni, D.D.S., Ph.D., assistant professor of restorative dentistry in the OHSU School of Dentistry, and assistant professor of biomedical engineering in the OHSU School of Medicine.

To address this issue, Bertassoni and colleagues used a 3D printing-inspired process -- based on their previous work fabricating artificial capillaries -- to create blood vessels in the lab. They placed a fiber mold made of sugar molecules across the root canal of extracted human teeth and injected a gel-like material, similar to proteins found in the body, filled with dental pulp cells. The researchers removed the fiber to make a long microchannel in the root canal and inserted endothelial cells isolated from the interior lining of blood vessels. After seven days, dentin-producing cells proliferated near the tooth walls and artificial blood vessels formed inside the tooth.

"This result proves that fabrication of artificial blood vessels can be a highly effective strategy for fully regenerating the function of teeth," says Bertassoni, who also serves as an honorary lecturer in Bioengineering at University of Sydney-School of Dentistry. "We believe that this finding may change the way that root canal treatments are done in the future."
-end-
The study was funded by the National Institute of Dental and Craniofacial Research of the National Institutes of Health (R01DE026170), and the Medical Research Foundation of Oregon.

Oregon Health & Science University

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.