Nav: Home

Imaging helps to spot fake ancient daggers

June 12, 2017

Since the 19th century, collectors have become increasingly interested in weapons from ancient Asia and the Middle East. In an attempt to fight forged copies, physicists are now adding their imaging power to better authenticate these weapons; the fakes can't resist the investigative power of X-rays combined with neutron imaging. In a study published in EPJ Plus, an Italian team, working in close collaboration with the Wallace Collection in London and the Neutron Imaging team at the Helmholtz Zentrum Berlin, has demonstrated the usefulness of such a combined imaging approach to help museum curators in their quest to ensure authenticity. Filament Salvemini, currently affiliated with the Australian Centre for Neutron Scattering ACNS at ANSTO in Lucas Heights near Sydney, and colleagues can now reliably tell first-class modern copies of early daggers and swords from authentic ones.

In this study, the authors focus on a kris - the distinctive weapon of Malaysia and Indonesia - and a kanjar - a double-edged dagger with a slightly curved blade and a pistol-grip made of metal, ivory, jade or some other hard-stone found e.g. in Persia and India.

The team relied on non-invasive techniques, based on the interaction of radiation with matter, to effectively complement conventional studies based on the surface analysis of weapons. As a result, they were able to characterise their entire 3D volume. As part of the authentication process, they were also able to identify the manufacturing method used for the respective dagger on the basis of the bulk morphology and microstructure of the metal.

The authors found the internal structure of the traditional kris examined in this study was inconsistent with descriptions of traditional forging methods to be found in the extant literature, thus suggesting the artefact was a fake. By contrast, the kanjar analysed in the study is most likely to be authentic, as the material distribution in the volume of the blade conforms to traditional metallurgical processes. Clues such as the presence of bulk defects and metal layers of different composition provide further insights concerning the thermal and mechanical treatments used for both types of weapons.
-end-
Reference: F. Salvemini, F. Grazzia, N. Kardjilov, F. Wieder, I. Manke, D. Edge, A. Williams, M. Zoppi (2017), Combined application of imaging techniques for the characterization and authentication of ancient weapons, Eur. Phys. J. Plus 132:228, DOI 10.1140/epjp/i2017-11496-6

Springer

Related Neutron Imaging Articles:

Neutron-rich nucleus shapeshifts between a rugby ball and a discus
Researchers have shown that there are two coexisting, competing quantum shapes at low energy in 98Kr, never before seen for neutron-rich Kr isotopes.
Neutron lifetime measurements take new shape for in situ detection
Neutrons are inherently unstable and don't last long outside an atomic nucleus, and because they decay on a time scale similar to the period for Big Bang Nucleosynthesis, accurate simulations of the BBN era require thorough knowledge of the neutron lifetime, but this value is still not precisely known.
In a neutron-rich tin nucleus, electromagnetism can win over the strong force
In a recent experiment performed at the Radioactive Isotope Beam Factory at RIKEN, an international collaboration with scientists from eleven countries, led by scientists of the Instituto de Estructura de la Materia, CSIC (Spain) and the RIKEN Nishina Center (Japan), made a very surprising observation: High-energy gamma rays -- which are mediated by the electromagnetic force -- are emitted in the decay of a certain excited nucleus -- tin 133, in competition with neutron emission, the decay mode mediated by the strong nuclear force.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
A population of neutron stars can generate gravitational waves continuously
Scientists at TIFR show that a population of neutron stars have a spin rate that is much higher than that calculated by the conventional method.
Neutron crystallography aids in drug design
Knowledge of H-bonding networks, water molecule orientations and protonation states, along with details of hydrophobic and electrostatic interactions, can prove vital towards a better understanding of many biological processes, such as enzyme mechanisms and can help guide structure-based drug design.
Mapping the exotic matter inside neutron stars
Scientists performed the first accurate determination of the thermodynamic properties of dense quark matter under violent conditions that occur during neutron star mergers, and suggest a step towards distinguishing between neutron and quark matter cores in neutron stars.
Improving safety of neutron sources
There is a growing interest in the scientific community in a type of high-power neutron source that is created via a process referred to as spallation.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
ORNL neutron 'splashes' reveal signature of exotic particles
Researchers used neutrons to uncover novel behavior in materials that holds promise for quantum computing.

Related Neutron Imaging Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".