Nav: Home

Uncovering the biology of a painful and disfiguring pediatric disease

June 12, 2017

Hyaline Fibromatosis Syndrome (HFS) is a rare but severe genetic disease that affects babies, children, and adults. A glassy substance called hyaline accumulates in the skin and various organs of patients, causing painful deformities and may lead to early death. The disease is caused by gene mutations that destroy the function of a protein whose physiological function is little understood. EPFL scientists have now studied and characterized its function for the first time, showing that it binds and controls the body levels of an important type of collagen. The work is published in Nature Communications.

HFS is caused by a mutation of a gene called CMG2, also abbreviated as ANTXR2 because it renders cells sensitive to anthrax infections. The gene produces a protein that is embedded in the membrane of cells, and is known to bind anthrax toxins internalizing them into the cell where they exert their action. This is however not the physiological function of this protein.

The HFS mutation of the gene causes the protein to lose its function. A hallmark of the disease is the accumulation of collagen in large nodules under the skin. Collagen is the most abundant protein in mammals, found in skin, cartilage, blood vessels, and even teeth. There are many different types of collagen, which surround cells and support the body's various tissues and organs by forming elastic or rigid structural networks.

The lab of Gisou Van der Goot at EPFL has now shown for the first time that the CMG2 protein interacts with a type of collagen called collagen VI. Normally, CMG2 binds collagen VI and, when there is too much, internalizes it into the cell's lysosomes for degradation. The study suggests that, in HFS, the mutation of the CMG2 gene disrupts the function of the protein, leading to accumulation of collagen VI in various parts of the body.

Collagen VI is a type of collagen that recent studies have found in multiple sites in the body, such as the heart, neurons, immune cells, tendons, lungs, and the skin. Depending on the type of tissue, it plays different protective and mechanical roles, but it has also been shown to be involved in a number of diseases, including the growth of cancer tumors.

The EPFL researchers studied HFS nodules in mouse models as well as a human patient. The female HFS mice characteristically suffer from accumulation of collagen in the uterus, which makes them sterile. The human patient had nodules at various body sites including the scalp and behind the ear. Studying tissue samples, the researchers found that the nodules in both mice and human were rich in collagen VI.

Wanting to understand the relationship between CMG2 and collagen VI, the team developed double-knockout mice in which the genes for both proteins -- CMG2 and collagen VI -- had been deleted. Previous studies have shown that CMG2-knockout mice are infertile due to uterine nodules that render them infertile. But remarkably, the scientists found that when the gene for collagen VI was deleted too, the mice regained their fertility, confirming that CMG2 and collagen VI are somehow connected in HFS.

Further studies showed that CMG2 physically binds collagen VI through a specialized domain. The CMG2 protein then acts as a receptor, sending a signal into the cell, causing collagen VI to be internalized and degraded inside the cell's lysosomes.

The study reveals a major physiological function for CMG2 and demonstrates its interaction with collagen VI. This interaction explains how major HSF symptoms arise when mutation of the CMG2 gene disrupts the ability of the CMG2 protein to control the levels of collagen VI, which then over-accumulates and produces the painful and disfiguring symptoms of the disease.
-end-
This study was led by EPFL's Global Health Institute in collaboration with the University of Bern, the Medical University of Innsbruck, the University of Freiburg, the Centre hospitalier universitaire vaudois (CHUV), and the University of Padova. It was funded by the Swiss National Science Foundation (SNSF), the Gelu Foundation, the Francis and Marie-France Minkoff Foundation, the Solis Foundation, and the Associazione ISI.

Reference

Jérôme Bu?rgi, Béatrice Kunz, Laurence Abrami, Julie Deuquet, Alessandra Piersigilli, Sabine Scholl-Bu?rgi, Ekkehart Lausch, Sheila Unger, Andrea Superti-Furga, Paolo Bonaldo, F. Gisou van der Goot. CMG2/ANTXR2 regulates extracellular for collagen VI which accumulates in Hyaline Fibromatosis Syndrome. Nature Communications 2017. DOI: 10.1038/NCOMMS15861

Ecole Polytechnique Fédérale de Lausanne

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...