Nav: Home

Insomnia genes found

June 12, 2017

An international team of researchers has found, for the first time, seven risk genes for insomnia. With this finding the researchers have taken an important step towards the unravelling of the biological mechanisms that cause insomnia. In addition, the finding proves that insomnia is not, as is often claimed, a purely psychological condition. Today, Nature Genetics publishes the results of this research.

Insomnia is probably the most common health complaint. Even after treatment, poor sleep remains a persistent vulnerability for many people. By having determined the risk genes, professors Danielle Posthuma (VU and VUmc) and Eus Van Someren (Netherlands Institute for Neuroscience, VU and VUmc), the lead researchers of this international project, have come closer to unravelling the biological mechanisms that cause the predisposition for insomnia.

Hope and recognition for insomniacs

Professor Van Someren, specialized in sleep and insomnia, believes that the findings are the start of a path towards an understanding of insomnia at the level of communication within and between neurons, and thus towards finding new ways of treatment.

He also hopes that the findings will help with the recognition of insomnia. "As compared to the severity, prevalence and risks of insomnia, only few studies targeted its causes. Insomnia is all too often dismissed as being 'all in your head'. Our research brings a new perspective. Insomnia is also in the genes."

In a sample of 113,006 individuals, the researchers found 7 genes for insomnia. These genes play a role in the regulation of transcription, the process where DNA is read in order to make an RNA copy of it, and exocytosis, the release of molecules by cells in order to communicate with their environment. One of the identified genes, MEIS1, has previously been related to two other sleep disorders: Periodic Limb Movements of Sleep (PLMS) and Restless Legs Syndrome (RLS). By collaborating with Konrad Oexle and colleagues from the Institute of Neurogenomics at the Helmholtz Zentrum, München, Germany, the researchers could conclude that the genetic variants in the gene seem to contribute to all three disorders. Strikingly, PLMS and RLS are characterized by restless movement and sensation, respectively, whereas insomnia is characterized mainly by a restless stream of consciousness.

Genetic overlap with other characteristics

The researchers also found a strong genetic overlap with other traits, such as anxiety disorders, depression and neuroticism, and low subjective wellbeing. "This is an interesting finding, because these characteristics tend to go hand in hand with insomnia. We now know that this is partly due to the shared genetic basis", says neuroscientist Anke Hammerschlag (VU), PhD student and first author of the study.

Different genes for men and women

The researchers also studied whether the same genetic variants were important for men and women. "Part of the genetic variants turned out to be different. This suggests that, for some part, different biological mechanisms may lead to insomnia in men and women", says professor Posthuma. "We also found a difference between men and women in terms of prevalence: in the sample we studied, including mainly people older than fifty years, 33% of the women reported to suffer from insomnia. For men this was 24%."

The risk genes could be tracked down in cohorts with the DNA and diagnoses of many thousands of people. The UK Biobank - a large cohort from England that has DNA available - did not have information as such about the diagnosis of insomnia, but they had asked their participants whether they found it difficult to fall asleep or to have an uninterrupted sleep. By making good use of information from slaapregister.nl (the Dutch Sleep Registry), the UK Biobank was able, for the first time, to determine which of them met the insomnia profile. Linking the knowledge from these two cohorts is what made the difference.
-end-


Vrije Universiteit Amsterdam

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".