Nav: Home

Do mast cells contribute to more severe disease in dengue infection?

June 12, 2017

New Rochelle, NY, June 12, 2017--Why mosquito-borne dengue virus causes more severe disease in some individuals, including hemorrhagic fever with or without shock, remains controversial and researchers are focusing on the factors related to the interaction between the virus and the host immune system, including the role of mast cells. An in-depth review of the latest research showing how mast cells can be both protective and can contribute to the most severe forms of dengue is presented in the article "Role of Mast Cells in Dengue Virus Pathogenesis," published in DNA and Cell Biology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the DNA and Cell Biology website through July 3, 2017.

Coauthors Berlin Londono-Renteria, Kansas State University, Manhattan, KS, Julio Marinez-Angarita, Instituto Nacional de Salud, Bogota, Colombia, and Andrea Troupin and Tonya Colpitts, University of South Carolina School of Medicine, Columbia, SC, study how mast cells recognize and interact with dengue virus and how mosquito saliva may affect the degranulation response of mast cells and the local immune responses during dengue virus infection in human skin. The researchers provide insights on what occurs during the early stages of dengue transmission and the mechanisms involved in mast cell activation and degranulation, which can increase the permeability of the human vasculature, causing it to become leaky.

"Mast cells are best known for their roles in allergies (such as pollen or food) and, for rare people, sensitivity to the saliva injected by mosquitos during bites. In this BIT, Colpitts and co-authors demonstrate the contributions of these cells to the pathogenesis of dengue, a severe disease," says Carol Shoshkes Reiss, PhD, Editor-in-Chief of DNA and Cell Biology and Professor, Departments of Biology and Neural Science, and Global Public Health at New York University, NY. "Understanding this may lead us to new approaches to the treatment of dengue fever and dengue shock syndrome. The latter secondary infection can be life-threatening."
-end-
About the Journal

DNA and Cell Biology is the trusted source for authoritative, peer-reviewed reporting on the latest research in the field of molecular biology. By combining mechanistic and clinical studies from multiple systems in a single journal, DNA and Cell Biology facilitates communication among biological sub-disciplines. Coverage includes gene structure, function, and regulation, molecular medicine, cellular organelles, protein biosynthesis and degradation, and cell-autonomous inflammation and host cell response to infection. Complete tables of content and a sample issue may be viewed on the DNA and Cell Biology website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, Antioxidants and Redox Signaling, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".