Nav: Home

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery

June 12, 2018

Lithium-sulfur (Li-S) battery can be put into practice, if 20% of theoretical energy densities (2600 Wh/kg or 2800 Wh/L) can be achieved. Investigators have the ambition to reach the energy density of 500 Wh/kg in the near future.

Xue-Ping Gao and co-workers, from Nankai University, tell us "Till now, the volumetric energy density of 500 Wh/L is not satisfied. But it was already realized in commercial lithium-ion batteries (LIBs) many years ago." They emphasize, "The low volumetric energy density is a bottleneck of practical Li-S battery."

Intrinsically, sulfur has lower density than transition metal oxides as cathode in LIBs. Worse, in order to improve the electrochemical performance, sulfur is usually forced to load onto various light-weight carbon hosts, leading to more lower volumetric capacity of sulfur-based composites, and undermining the volumetric energy density of Li-S battery.

Compared with various carbon materials, heavy metal oxides not only offer good adsorption ability of polysulfides to suppress the shuttle effect, but also help to obtain dense sulfur-based composites with high tap density, which could be the primary reason for realizing both the good stability and high volumetric capacities of sulfur-based composites.

Gao introduces, "Based on above consideration, we developed nickel ferrite (NiFe2O4) porous hollow 1D nanofibers via electrospinning technology. The as-prepared NiFe2O4 nanofibers were used here as a novel host of sulfur in order to increase the volumetric capacity of sulfur-based composites."

Gao details their experiment, "Firstly, the polysulfide adsorption test reveals the strong chemisorption towards soluble polysulfides by NiFe2O4." Both the stable adsorption geometry and adsorption energy of Li2S8 on (111) plane of NiFe2O4 are confirmed by Density Functional Theory (DFT) calculation as compared with carbon nanotubes (CNTs).

As a result, the S/NiFe2O4 composite delivers an initial discharge capacity of 963.6 mAh/g, and good cycle stability. "Furthermore," he said, "the S/NiFe2O4 composite shows nearly 2 times higher superior volumetric capacity than S/CNT composite."

Gao points out, "It comes no surprise that the S/NiFe2O4 composite has much larger the tap density than the S/CNT composite."

In addition, other metal ferrites MFe2O4 (M = Co, Mg, Zn) have also been investigated as polar host of sulfur, and the results confirm the superiority of metal ferrites in fabricating sulfur-based composites with high gravimetric/volumetric capacities for the potential application of Li-S batteries with high gravimetric/volumetric energy density.
-end-
This research was funded by the New Energy Project for Electric Vehicles in National Key Research and Development Program (2016YFB0100200), the National Natural Science Foundation of China (21573114, and 51502145).

See the article: Ze Zhang, Dihua Wu, Zhen Zhou, Guoran Li, Sheng Liu and Xueping Gao. "Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery,"
Sci. China Mater., (2018) doi:10.1007/s40843-018-9292-7.

This article was published online:

http://engine.scichina.com/doi/10.1007/s40843-018-9292-7
https://link.springer.com/article/10.1007/s40843-018-9292-7

Science China Press

Related Sulfur Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Science fiction horror wriggles into reality with discovery of giant sulfur-powered shipworm
Our world seems to grow smaller by the day as biodiversity rapidly dwindles, but an international team of researchers discovered a never before studied giant, black, mud dwelling, worm-like animal.
Researchers develop a new way to study key biological processes
A team of scientists at The University of East Anglia (UEA) has developed a novel way to obtain previously inaccessible insight into the functions of a group of essential proteins.
New gel-like coating beefs up the performance of lithium-sulfur batteries
Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.
Volcano breath: Measuring sulfur dioxide from space
In a new study published in Scientific Reports this week, a team led by researchers from Michigan Technological University created the first, truly global inventory for volcanic sulfur dioxide emissions, using data from the Dutch-Finnish Ozone Monitoring Instrument on NASA's Earth Observing System Aura satellite launched in 2004.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Getting rid of the last bits of sulfur in fuel
A new technique could help scrub the last traces of sulfur from diesel and gas.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.
The hidden side of sulfur
The active element in the molecule that initiates transformations in synthetic organic chemistry, known as the catalyst, is often hydrogen.
New findings boost promise of molybdenum sulfide for hydrogen catalysis
Researchers from North Carolina State University, Duke University and Brookhaven National Laboratory have found that molybdenum sulfide (MoS2) holds more promise than previously thought as a catalyst for producing hydrogen to use as a clean energy source.

Related Sulfur Reading:

Saving My Sanity: Sulfur Springs Book 3

Sulfur Springs: A Novel (Cork O'Connor Mystery Series)
by William Kent Krueger (Author)

MSM: On Our Way Back to Health with Sulfur
by Beth M. Ley (Author)

Sulfur Concrete for the Construction Industry: A Sustainable Development Approach
by Abdel-Mohsen Mohamed (Author), Maisa El Gamal (Author)

A Sulfur Anthology
by Clayton Eshleman (Editor)

Why Hell Stinks of Sulfur: Mythology and Geology of the Underworld
by Salomon Kroonenberg (Author), Andy Brown (Translator)

Sulfur Assimilation and Abiotic Stress in Plants
by Nafees A. Khan (Editor), Sarvajeet Singh (Editor), Shahid Umar (Editor)

Sulfur: History, Technology, Applications & Industry
by Gerald Kutney (Author)

MSM: Azufre Para recuperar la Salud (Spanish Edition)
by Beth M. Ley (Author)

Sulfur (Exploring the Elements)
by Elise Tobler (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#496 Anti-Intellectualism: Down With the Scientist!
This week we get to the bottom of anti-intellectualism. We'll be speaking with David Robson, senior journalist at BBC Future, about misology -- the hatred of reason and argument -- and how it may be connected to distrust of intellectuals. Then we'll speak with Bruno Takahashi, associate professor of environmental journalism and communication at Michigan State University, about how the way we consume media affects our scientific knowledge and how we feel about scientists and the press.