Nav: Home

Algorithm to transform investment banking with higher returns

June 12, 2019

A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.

"There is a global race to find a viable solution to create more reliable - and better performing - investment decisions in financial trading. Our model offers consistently higher returns compared to others developed to date," says Dr Arman Hassanniakalager of the university's School of Management.

Hassanniakalager, who will present the research at the Financial Management Association conference in Glasgow this week, says his model has been shown to result in a 3% higher return than the benchmark U.S. Federal Reserve Funds rate, based on evidence from 12 stock market indices from around the globe. An improvement of 0.5-1.0% would be regarded as significant.

The search for an all-powerful investment algorithm has stepped up in recent years and early results have been mixed. The challenge is to create a level of reliability that consistently outperforms investment bankers and financiers and a tool that can function equally well in rising and falling markets.

The continued development of algorithms and their perceived benefits are raising hopes and optimism among many in the markets. But the increasing reliance on the tools has also created some nervousness in the top tiers of the world's financial systems - and some scepticism from those who believe there will always be a role for the inspired human touch.

Hassanniakalager, whose expertise is in developing novel artificial intelligence and statistical methods for financial decision making, said his algorithm has reached the point where it is consistently outperforming both conventional methods of investment and algorithmic tools.

"There is a lot of theoretical thinking and aspirations around about such investment tools but the key question is solving how to make them work in the real world. We think we have addressed that question," Hassanniakalager said.

The algorithm can be linked to artificial intelligence, which will learn from investment decisions and fine-tune itself automatically. He envisages a black-box solution for investment managers who will be able to run complex alternative investment scenarios in real time.

The primary use would be in trading rooms, in particular in the technical analysis field, assessing how stock markets react to company news or in gauging the performance of derivative instruments and offering different investment paths to managers.

The tool will change the decision-making process and potentially the market landscape itself - the days of multiple screens in trading rooms and managers seeking to make sense of an increasingly complex multitude of real-time and historic data may be numbered.

There may even be a question mark over the future of decision-makers themselves.

"Whoever succeeds in this has the potential to transform financial markets and particularly investment banking and equities trading. There will be winners and losers - it isn't hard to imagine the radical impact on employment at the highest banking levels if investment decisions are increasingly automated," Hassanniakalager says.

The algorithm, which Hassanniakalager describes as universal, may have applications beyond financial markets. "If you learn what is changing statistically, you can apply that to other fields, such as genetics. That's the beauty of statistics," he says.

Hassanniakalager will present the findings of the research team, which includes academics from the Universities of Glasgow and St Andrews, on Friday 14 June at the FMA International conference at the University of Strathclyde.
-end-
Media contacts and resources

* For further information or to arrange interviews with Arman Hassanniakalager please contact Tony Roddam or Alison Jones at the University of Bath press office via press@bath.ac.uk or on +44 (0)1225 386319

The School of Management is one of the UK's leading business schools, the school is ranked first for Marketing, 2nd for Business and Management Studies and 6th for Accounting and Finance (the Complete University Guide 2020). It is a leading centre for management research, placed 8th in the UK in the latest research evaluation exercise.

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 9th out of 131 UK universities in the Complete University Guide 2020.

University of Bath

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab