Nav: Home

New tool can pinpoint origins of the gut's bacteria

June 12, 2019

A UCLA-led research team has developed a faster and more accurate way to determine where the many bacteria that live in, and on, humans come from. Broadly, the tool can deduce the origins of any microbiome, a localized and diverse community of microscopic organisms.

The new computational tool, called "FEAST," can analyze large amounts of genetic information in just a few hours, compared to tools that take days or weeks. The software program could be used in health care, public health, environmental studies and agriculture. The study was published online in Nature Methods.

A microbiome typically contains hundreds to thousands of microbial species. Microbiomes are found everywhere, from the digestive tracts of humans, to lakes and rivers that feed water supplies. The microorganisms that make up these communities can originate from their surrounding environment, including food.

Knowing where these organisms come from and how these communities form can give scientists a more detailed picture of the unseen ecological processes that affect human health. The researchers developed the program to give doctors and scientists a more effective tool to investigate these phenomena.

The source-tracking program gives the percentage of the microbiome that came from somewhere else. It's similar in concept to a census that reveals the countries that its immigrant population came from, and what percentage each group is of the total population.

For example, using the source-tracking tool on a kitchen counter sample can indicate how much of that sample came from humans, how much came from food, and specifically which types of food.

Armed with this information, doctors will be able to distinguish a healthy person from one who has a particular disease by simply analyzing their microbiome. Scientists could use the tool to detect contamination in water resources or in food supply chains.

"The microbiome has been linked to many aspects of human physiology and health, yet we are just in the early stages of understanding the clinical implications of this dynamic web of many species and how they interact with each other," said Eran Halperin, the study's principal investigator who holds UCLA faculty appointments in the Samueli School of Engineering and in the David Geffen School of Medicine.

"There has been an unprecedented expansion of microbiome data, which has rapidly increased our knowledge of the diverse functions and distributions of microbial life," Halperin added. "Nonetheless, such big and complex datasets pose statistical and computational challenges."

Compared to other source-tracking tools, FEAST is up to 300 times faster, and is significantly more accurate, the researchers say.

Also, current tools can only analyze smaller datasets, or only target specific microorganisms that are deemed to be harmful contaminants. The new tool can process much larger datasets and offer a more complete picture of the microorganisms that are present and where they came from, the researchers say.

The researchers confirmed FEAST's viability by comparing it against analyses of previously published datasets.

For example, they used the tool to determine the types of microorganisms on a kitchen counter and it provided much more detail than previous tools that analyzed the same dataset.

They also used the tool to compare the gut microbiomes of infants delivered by cesarean section to the microbiomes of babies who were delivered vaginally.

"My hope is that scientists will use FEAST to diagnose bacteria-related health conditions," said UCLA computer science graduate student Liat Shenhav, the study's first author. "For example, if a particular cancer has a microbial signature, FEAST can potentially be utilized for early diagnosis."
The study's other authors are UCLA graduate students Mike Thompson and Leah Briscoe; Tyler Joseph and Itsik Pe'er of Columbia University; and Ori Furman, David Bogumil and Itsik Mizrahi of Ben-Gurion University, Israel.

The authors have made FEAST available on a software sharing platform.

The study was supported by the National Science Foundation.

UCLA Samueli School of Engineering

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...