Nav: Home

Binary solvent mixture boosting high efficiency of polymer solar cells

June 12, 2019

Tremendous progress of organic solar cells (OSCs) has been exemplified by the use of non-fullerene electron acceptors (NFAs) in the past few years. Compared with fullerene derivative acceptors, NFAs show a multitude of advantages including tunable energy levels, broad absorption spectrum and strong light absorption ability, as well as high carrier mobility. To further improve the efficiency of non-fullerene OSCs, fluorine (F) or chlorine (Cl) atoms have been introduced into the chemical structure of NFAs as an effective approach to modulate the HOMO and LUMO levels. With a small Van der Waals radius and large electronegativity, the F atom improves the molecular planarity and aggregation tendency of NFAs, as well as increasing their crystallization ability.

However, the tendency of fluorinated NFAs to self-organize into crystals usually leads to excessive phase separation, which has been found to increase the film surface roughness to enlarge charge recombination at the electrode interface, and more importantly to reduce the bulk heterojunction interfaces within the photoactive layer; effects that all lead to reduced power efficiency.

Very recently, Professor Tao Wang's group in Wuhan University of Technology demonstrated an effective approach to tune the molecular organization of a fluorinated NFA (INPIC-4F), and its phase separation with the donor PBDB-T, by varying the casting solvent (CB, CF and their mixtures). When a high boiling-point solvent CB was employed as the casting solvent, INPIC-4F formed lamellar crystals which further grow into micron-scale spherulites, resulting in a low PCE of 8.1% only. When the low boiling-point solvent CF was used, the crystallization of INPIC-4F has been suppressed and the low structure order leads to a moderate PCE of 11.4%. By using binary solvent mixture (CB:CF=1.5:1, v/v), the efficiency of PBDB-T:INPIC-4F non-fullerene OSCs was improved to 13.1%. These results show great promise of binary solvent strategy to control the molecular order and nanoscale morphology for high efficiency non-fullerene solar cells.
-end-
This work was supported by the Natural Science Foundation of Hubei Province (Grant No. 2018CFA055), the National Natural Science Foundation of China (Grants No. 21774097, 21504065, 51573077 and 21875111).

See the article:

Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner E, Kilbride R, Li D, Du B, Gurney R, Liu D, Tang W, Wang T. Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Sci. China Chem. 2019, doi: 10.1007/s11426-019-9484-8.

Science China Press

Related Efficiency Articles:

A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Improving efficiency, brightness of perovskite LEDs
Advances in organic phosphorescent materials are opening new opportunities for organic light-emitting diodes for combined electronics and light applications, including solar cells, photodiodes, optical fibers and lasers.
'Deforming' solar cells could be clue to improved efficiency
Solar cells and light sensing technologies could be made more efficient by taking advantage of an unusual property due to deformations and defects in their structures.
Pioneering 3D printed device sets new record for efficiency
A new 3-D printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials -- and is cheap to produce in bulk -- has been manufactured by researchers at Swansea University's SPECIFIC Innovation and Knowledge Centre.
New surface treatment could improve refrigeration efficiency
Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface.
More Efficiency News and Efficiency Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...