Nav: Home

The atmosphere of a new ultra hot Jupiter is analyzed

June 12, 2019

MASCARA-2B/KELT-20b is an ultra hot Jupiter. It belongs to a new group of exoplanets, the hottest known until now, which can reach temperatures at the surface of over 2,000 K. The reason for its high temperature is the proximity of its orbit around its host star, causing it to receive a large flux of radiation in the upper layers of its atmosphere.

The team, led by IAC/ULL researcher Núria Casasayas, which had already made initial measurements of the atmosphere during 2018, observed the planet during four transits. This means during four of the times when the planet passed in front of the disc of its star, along our line of sight. For this they used the HARP-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) and the CARMENES spectrograph on the 3.5 m telescope of the Calar Alto Observatory (Almería).

"The two instruments sample slightly different wavelength regions, which allows us to sample a wider spectral range", explains Casasayas. And she adds: "We have been able to detect hydrogen beta, singly ionized iron and magnesium with data from HARPS-N while the presence of ionized calcium was detected only by using CARMENES. Neutral sodium and hydrogen alpha are detected with both instruments".

The study of exoplanetary atmospheres has become front line research in recent years. Instruments which perform high resolution spectroscopy allow us not only to discover the atmospheric composition of planets outside the Solar System, but also to measure other important parameters such as the temperatures of the layers where their constituents are found, and other parameters of the dynamics of the atmosphere.
-end-
Video (YouTube link): https://youtu.be/TduJOvZ3TTk Credit: Gabriel Pérez Díaz, SMM (IAC)

N. Casasayas-Barris, E. Palle, F. Yan, G. Chen, S. Kohl, M. Stangret, H. Parviainen, Ch. Helling, N. Watanabe, S. Czesla, A. Fukui, P. Montañes-Rodriguez, E. Nagel, N. Narita, L. Nortmann, G. Nowak, J.H.M.M. Schmit, M.R. Zapatero Osorio. Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b. Astronomy and Astrophysics manuscript May 30, 2019.

Instituto de Astrofísica de Canarias (IAC)

Related Atmosphere Articles:

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.
Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.
Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.
The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.
An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.
Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.
Astronomers find exoplanet atmosphere free of clouds
Scientists have detected an exoplanet atmosphere that is free of clouds, marking a pivotal breakthrough in the quest for greater understanding of the planets beyond our solar system.
Helium detected in exoplanet atmosphere for the first time
Astronomers have detected helium in the atmosphere of a planet that orbits a star far beyond our solar system for the very first time.
Mountain erosion may add CO2 to the atmosphere
Scientists have long known that steep mountain ranges can draw carbon dioxide (CO2) out of the atmosphere -- as erosion exposes new rock, it also starts a chemical reaction between minerals on hill slopes and CO2 in the air, 'weathering' the rock and using CO2 to produce carbonate minerals like calcite.
The changing chemistry of the Amazonian atmosphere
Researchers have been debating whether nitrogen oxides (NOx) can affect levels of OH radicals in a pristine atmosphere but quantifying that relationship has been difficult.
More Atmosphere News and Atmosphere Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.