Nav: Home

Mathematical tools to study tumors

June 12, 2019

Researchers from the Department of Cellular Biology at the University of Seville and the Seville Institute of Biomedicine (IBiS), Pablo Vicente and Doctor Luisma Escudero, in close collaboration with the researcher Rebecca Burgos and other members of the group of Doctor Rosa Noguera (University of Valencia--INCLIVA, CIBERONC) have published a study aimed at developing new therapies to fight childhood cancer.

This project means a step forward in the basic aspect of the study of cancer that could open new avenues of research to help understand what makes a tumour more a less aggressive and how they can be fought. However, the researchers stress that their finding does not in itself mean a cure for cancer.

Neuroblastoma is a type of cancer that originates during the development of the nervous system. It mainly affects children less than 18 months old. It is the most common solid tumour in early childhood and despite the great improvements made in the cure rate for other childhood tumours, the survival rate for patients with neuroblastoma is much less satisfactory.

There is clear evidence that the location where the tumour is located and that supports it (the extracellular matrix), plays an important role in the initial growth and development of the tumour. This setting is formed by a network of fibres and fibrils, which, depending on their density and how they are connected, give more or less rigidity to this tumorous micro-environment.

Therefore, it is important to understand how tumour cells are related to the extracellular matrix and how the fibres and fibrils are organised. This is not easy. To achieve this, the researchers have combined in this study the analysis of images of biopsy samples of tumours from patients affected by neuroblastoma, with new mathematical procedures (Graph Theory) that have allowed them to describe how the vitronectin fibrils are organised. The conclusion of this complex study is quite a lot simpler. The degree of organisation of the vitronectin correlates with the aggressiveness of the tumour and could be used to classify patients before any potential treatment.

The results obtained suggest that vitronectin can change the rigidity of the location of the tumorous cells. In the most serious cases, vitronectin could guide the cancerous neuroblasts making it possible for them to invade other organs. That is to say, the changes caused by specific organisation of vitronectin can form "pathways" that could help the tumour to migrate, with the grave problems that this would cause. For this reason, this "basic science" study opens a possible new way of combatting this cancer which could be based in modifying the organisation of the vitronectin, so making tumours less aggressive.
-end-
This project has been financed by the Spanish Association against Cancer and has been published in the review International Journal of Cancer (IF: 7.36). The research has been co-led by the groups of Dr Rosa Noguera (University of Valencia-INCLIVA and the Biomedical Research Centre in the Cancer Network, CIBERONC) and Dr Luis M. Escudero (University of Seville, Biomedical Research Centre in the Neurodegenerative Diseases Network, CIBERNED) which works at the Seville Institute of Biomedicine, situated on the Campus of the Hospital Virgen del Rocío to foment the transfer of knowledge between basic and clinical research.

University of Seville

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...