Nav: Home

The brains of birds synchronize when they sing duets

June 12, 2019

When a male or female white-browed sparrow-weaver begins its song, its partner joins in at a certain time. They duet with each other by singing in turn and precisely in tune. A team led by researchers from the Max Planck Institute for Ornithology in Seewiesen used mobile transmitters to simultaneously record neural and acoustic signals from pairs of birds singing duets in their natural habitat. They found that the nerve cell activity in the brain of the singing bird changes and synchronizes with its partner when the partner begins to sing. The brains of both animals then essentially function as one, which leads to the perfect duet.

White-browed sparrow-weavers (Plocepasser mahali) live together in small groups in trees in southern and eastern Africa. Each bird has a roosting nest with an entrance and an exit. The dominant pair will have a breeding nest which is easily recognisable by the fact that one passage is closed to prevent eggs from falling out. In addition to the dominant pair, there are up to eight other birds in the group that help build nests and raise the young. All group members defend their territory against rival groups through duets of the dominant pair and choruses together with the helpers.

White-browed sparrow-weavers are one of the few bird species that sing in duet. It was assumed that some cognitive coordination between individuals was required to synchronise the syllables in the duet, however the underlying neuronal mechanisms of such coordination were unknown.

Miniature transmitters enable recording under natural conditions

"White-browed sparrow-weavers cannot develop their complex social structure in the laboratory. We were therefore only able to investigate the mechanisms of the duet singing in the natural habitat of the birds", says Cornelia Voigt, one of the three lead authors of the study. Because of this, researchers and technicians at the Max Planck Institute for Ornithology in Seewiesen developed mobile microphone transmitters to record the singing in the wild. These weigh only 0.6 g and were attached to the bird like a backpack.

With another newly developed transmitter, weighing only 1 g, the scientists could also make a synchronous record of the brain activity in the birds while they were singing in their natural environment. An antenna placed near the birds' tree recorded up to eight of these signals in parallel. With the help of an external sound card and a laptop, the singing and the brain signals were synchronously recorded with millisecond precision. "The technology we have developed must withstand the extreme conditions of the Kalahari Savannah in northern South Africa", says Susanne Hoffmann, a scientist in the Department of Behavioural Neurobiology. "The electronics for recording the signals were stored in a car. During the day, it got so hot that the laptop almost began to glow. But the recordings all worked well, even when the birds and their transmitters were caught in one of the few downpours".

Brain activity of the duetting birds synchronizes

Lisa Trost, also a scientist in the department, says: "Fortunately, the procedure for fixing the implants for neuronal measurements on the heads of the birds did not take long. After complete recovery, the respective bird was quickly returned to the group and did not lose its social status. All birds sang in the tree immediately after their return". The researchers recorded almost 650 duets. In many cases, the males began with the song and the partner joined in after some introductory syllables. The syllables between the duetting pair followed each other without delay and in perfect coordination. The coordination was so precise that analysis showed only a 0.25s delay between the duetting partners' singing bouts.

The singing of songbirds is controlled by a network of brain nuclei, the vocal control system. In one of these nuclei, the HVC, the call of the partner bird triggers a change in neuronal activity in the bird that began singing. This, in turn, affects its own singing. The result is a precise synchronization of the brain activity of both birds. "The rhythmic duet of the individuals is achieved through sensory information that comes from the partner", says Manfred Gahr, who led the study. The brains of the partners form a network that functions like an extended circuit to organize the temporal pattern for the duet. The researchers suspect that similar mechanisms are also responsible for coordinating movement during social interactions in humans (e.g. dancing with a partner).

"Until now, this kind of study has only been performed in the laboratory. Measuring the activity of nerve cells in the field using wireless transmitters is much less stressful for the birds," says Susanne Hoffmann. "We hope this study has laid the foundation for the further development of neuroethology".
-end-
Original Publication:

S. Hoffmann, L. Trost, C. Voigt, S. Leitner, A. Lemazina, H. Sagunsky, M. Abels, S. Kollmansperger, A. Ter Maat and M. Gahr (2019). Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nature Communications (https://doi.org/10.1038/s41467-019-10593-3)

Max-Planck-Gesellschaft

Related Brain Activity Articles:

More brain activity is not always better when it comes to memory and attention
Potential new ways of understanding the cause of cognitive impairments, such as problems with memory and attention, in brain disorders including schizophrenia and Alzheimer's are under the spotlight in a new research review.
Researchers to predict cognitive dissonance according to brain activity
A new study by HSE researchers has uncovered a new brain mechanism that generates cognitive dissonance -- a mental discomfort experienced by a person who simultaneously holds two or more contradictory beliefs or values, or experiences difficulties in making decisions.
Brain activity can be used to predict reading success up to 2 years in advance
By measuring brainwaves, it is possible to predict what a child's reading level will be years in advance, according to research from Binghamton University, State University of New York.
There's a close association between magnetic systems and certain states of brain activity
Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.
Hormone can enhance brain activity associated with love and sex
The hormone kisspeptin can enhance activity in brain regions associated with sexual arousal and romantic love, according to new research.
Manipulating brain activity to boost confidence
Is it possible to directly boost one's own confidence by directly training the brain?
Brain activity may predict risk of falls in older people
Measuring the brain activity of healthy, older adults while they walk and talk at the same time may help predict their risk of falls later, according to a study published in the Dec.
Neuro chip records brain cell activity
In order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large networks and groups of neurons.
Too much activity in certain areas of the brain is bad for memory and attention
Researchers led by Dr Tobias Bast in the School of Psychology at The University of Nottingham have found that faulty inhibitory neurotransmission and abnormally increased activity in the hippocampus impairs our memory and attention.
Brain changes after menopause may lead to lack of physical activity
Researchers from the University of Missouri have found a connection between lack of ovarian hormones and changes in the brain's pleasure center, a hotspot in the brain that processes and reinforces messages related to reward, pleasure, activity and motivation for physical exercise.

Related Brain Activity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...