Nav: Home

Physics at the edge

June 12, 2019

In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures. Their work led to the discovery of a new state of matter dubbed a "topological insulator," which would usher in a new era of materials science.

"A topological insulator is a material that is an insulator in its interior but is highly conducting on its surface," said UC Santa Barbara assistant physics professor Andrea Young. In two-dimensions, an ideal topological insulator would have "ballistic" conductance at its edges, Young explained, meaning that electrons traveling through the region would encounter zero resistance.

Ironically, while Kane and Mele's work would lead to the discovery of topological insulating behavior in a wide variety of materials, their original prediction -- of a topological insulator in graphene -- has remained unrealized.

At the heart of the trouble is spin-orbit coupling -- a weak effect in which the spin of the electron interacts with its orbital motion aroun the nucleus. Critical to all topological insulators, spin-orbit coupling is exceptionally weak in graphene, so that any topological insulating behavior is drowned out by other effects arising from the surface on which the graphene is supported.

"The weak spin-orbit coupling in graphene is a great pity," said postdoctoral researcher Joshua Island, because in practice things haven't really worked out that well for topological insulators in two dimensions. "The two dimensional topological insulators known to date are disordered and not very easy to work with," Island said. The conductance at the edges tends to diminish rapidly with the distance the electrons travel, suggesting it is far from ballistic. Realizing a topological insulator in graphene, an otherwise highly perfect two dimensional material, could provide a basis for low-dissipation ballistic electrical circuits or form the material substrate for topologically protected quantum bits.

Now, in work published in the journal Nature, Island, Young and their collaborators have found a way to turn graphene into a topological insulator (TI). "The goal of the project was to increase or enhance the spin-orbit coupling in graphene," lead author Island said, adding that attempts have been made over the years with limited success. "A way to do this is to put a material that has a very large spin-orbit coupling in close proximity with the graphene. The hope was that by doing that your graphene electrons will take on this property of the underlying material," he explained.

The material of choice? After studying several possibilities, the researchers settled on a transition metal dichalcogenide (TMD), consisting of the transition metal tungsten and the chalcogen selenium. Similar to graphene, tungsten diselenide comes in two-dimensional monolayers, bound together by van der Waals forces, which are relatively weak and distance-dependent interactions between atoms or molecules. Unlike graphene, however, the heavier atoms of the TMD lead to stronger spin-orbit coupling. The resulting device feature's graphene's ballistic electron conductance imbued with the strong spin-orbit coupling from the nearby TMD layer.

"We did see a very clear enhancement of that spin-orbit coupling," Island said.

"By adding spin-orbit coupling of just the right type, Joshua was able to find that this in fact leads to a new phase which is almost topologically insulating," Young said. In the original idea, he explained, the topological insulator consisted of a monolayer of graphene with a strong spin-orbit coupling.

"We had to use a trick only available in graphene multilayers to create the right type of spin-orbit coupling," Young explained about their experiment, which used a graphene bilayer. "And so you get something that approximates two topological insulators stacked on top of each other." Functionally, however, Island's device performs as well as other known 2D topological insulators -- the all-important edge states propagate for at least several microns, much longer than in other known TI materials.

Furthermore, according to Young, this work is one step closer to building an actual topological insulator with graphene. "Theoretical work has since shown that a graphene trilayer, fabricated in the same way, would lead to a true topological insulator."

Most importantly, the devices realized by Island and Young can be easily tuned between a topological insulating phase and a regular insulator, which does not have conducting edge states.

"You can route these perfect conductors around wherever you want," he said, "And that's something nobody's been able to do with other materials."
-end-
Research in this study was conducted also by Xingshan Cui, Eric Spanton and Haoxin Zhou at UCSB; Cyprian Lewandowski, Jun Yong Khoo and Leonid Levitov at Massachusetts Institute of Technology; Daniel Rhodes and James Hone at Columbia University; Takashi Taniguchi and Kenji Watanabe at National Institute for Materials Science, Japan; and Michael Zaletel at UC Berkeley

University of California - Santa Barbara

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
More Graphene News and Graphene Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.