Study identifies mechanism affecting X chromosome that could lead to new disease therapies

June 12, 2020

Researchers at Massachusetts General Hospital (MGH) have identified a key mechanism in X chromosome inactivation, a phenomenon that may hold clues that lead to treatments for certain rare congenital disorders.

Their findings, published in the journal Developmental Cell on June 11, 2020, may also aid in the creation of novel medicines for certain cancers.

Female humans and other mammals have two copies of the X chromosome in each of their cells. Both X chromosomes contain many genes, so only one of the pair can be active; having both X chromosomes expressing genes would be toxic to the cell.

For this reason, female mammals developed a mechanism called X chromosome inactivation, which silences one chromosome, explains Jeannie Lee, MD, PhD, of the Department of Molecular Biology at MGH, senior author of the Developmental Cell study.

Learning how to inactivate and reactivate an X chromosome would have important implications for medicine. A notable category of beneficiaries could be people with certain congenital diseases known as X-linked disorders, which are caused by mutations in genes on the X chromosome.

One example is Rett syndrome, a disorder brought on by a mutation in a gene called MECP2 that almost always occurs in girls and results in profound problems with language, learning, coordination, and other brain functions.

In theory, it may be possible to treat a disorder like Rett syndrome by reactivating the X chromosome. "Why don't we put the dormant X chromosome to work and rescue the cells that are lacking a proper copy of MECP2?" asks Lee.

The goal of X chromosome reactivation has led scientists to focus on epigenetic factors, which turn genes "on" or "off" without altering the genetic code. Silencing genes on the X chromosome occurs when a form of noncoding RNA called Xist spreads across the X chromosome, explains Lee.

However, Xist doesn't act alone: It must attract proteins called Polycomb repressive complexes (PRC) 1 and 2 to complete inactivation of the X chromosome.

But how Xist pulls in PRC1 and PRC2 had been unclear and the subject of debate. Research indicates that repeating sequences of nucleotides on Xist called Repeat A and Repeat B appear to act as magnets for these proteins. Yet some recent research suggests that Repeat A plays no role.

In the new study, Lee and her colleagues showed that both Repeat A and Repeat B are needed to attract PRC1 and PRC2 and complete X chromosome inactivation. By deleting Repeat A from Xist in mouse embryonic stem cells, they found that X chromosome inactivation is not only thwarted, but one X chromosome is eliminated entirely in order for the cells to survive in culture.

In human females, when one X chromosome is missing, the result is Turner syndrome, which affects stature, fertility, and other physical traits.

Understanding how Xist "recruits" PRC1 and PRC2 could have far-reaching implications, especially since the latter plays a key role in maintaining overall cell health.

"We think that through interfering with the Xist recruitment of Polycomb and other silencing complexes, we may eventually be able to treat X-linked diseases like Rett syndrome and perhaps even cancer," says Lee.
-end-
Jeannie Lee, MD, PhD, of the Department of Molecular Biology at Mass General, is also director of the Lee Laboratory and a professor of Genetics at Harvard Medical School. The lead authors of the Developmental Cell paper were David Colognori, PhD, a postdoctoral scholar at the UC Berkley/California Institute for Quantitative Biosciences, and Hongjae Sunwoo, PhD, a senior scientist at Intellia Therapeutics.

Paper cited: Colognori D, Sunwoo H, Wang D, Wang CY, Lee JT Xist Repeats A and B Account for Two Distinct Phases of X Inactivation Establishment Developmental Cell 2020 Jun 11.

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1B and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2019, Mass General was once again named #2 in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.