Nav: Home

Cytokine implicated in HLH treatment resistance

June 12, 2020

Scientists at St. Jude Children's Research Hospital, UCSF Benioff Children's Hospitals and Baylor College of Medicine are investigating how to best treat hemophagocytic lymphohistiocytosis (HLH), a rare immune disorder. Their work, appearing as an advance online publication today in Blood, details how combining two drugs may be a good treatment for HLH.

"For the last 20 years, treatment for HLH has remained a combination of the drugs dexamethasone and etoposide," said co-senior author Kim Nichols, M.D., of St. Jude Oncology. "But we know that many patients either do not respond to this regimen or later relapse, so we dug into the biology to come up with a different treatment strategy."

In HLH, the immune system becomes over-activated and immune cells produce cytokines, which are chemicals released into the bloodstream to try to recruit and activate additional immune cells. Patients with HLH can experience a cytokine storm syndrome where so many cytokines start circulating that they feed upon themselves to further drive immune activation.

There are several cytokines elevated in HLH patients. Some of these cytokines bind to receptors on the cell's surface. When that happens, those receptors recruit and activate Janus kinases (JAKs), which are signaling molecules.

A new strategy emerges

Previous research by Nichols revealed that the JAK1/2 inhibitor ruxolitinib had a positive effect in mouse models of HLH. By inhibiting the JAK/STAT pathway, ruxolitinib interferes with cytokine communication. Nichols and her team wanted to better understand the mechanism behind this and investigate whether any particular cytokine was more important to inhibit.

"We wanted to know whether any of the cytokines that are elevated in HLH contribute to dexamethasone resistance, and if so, whether blocking the signaling of these cytokines might reverse treatment resistance," said co-first author Katherine Verbist, Ph.D., of St. Jude Oncology.

The researchers' work in cell lines and mouse models determined that of all the cytokines elevated in HLH, interleukin-2 is critically important to driving resistance to dexamethasone. Interleukin-2 is produced by activated T cells and promotes their survival. The researchers showed that by blocking the effect of interleukin-2, the T cells can be re-sensitized to and destroyed by dexamethasone.

The researchers found that the combination of dexamethasone and ruxolitinib was significantly more effective in quelling the signs of HLH in animal models compared to treatment with either drug alone. The study provides additional evidence to support testing the combination through a clinical trial.

"We were able to take lessons learned from our studies of pediatric leukemia, which is also often treated with dexamethasone, and apply them to our study of cytokines in HLH," said co-senior author Michelle Hermiston, M.D., Ph.D., of UCSF Benioff Children's Hospitals. "Like in leukemia, we were able to show that a specific cytokine signaling through the JAK pathway could promote resistance to treatment."
The study's other co-first author is Lauren Meyer of UCSF Benioff Children's Hospitals. Other authors include Brooks Scull and Carl Allen of Baylor College of Medicine; and Sabrin Albeituni, Rachel Bassett, Alexa Stroh and Heather Tillman of St. Jude.

The research was funded in part by Incyte Corporation and Novartis Pharmaceuticals Corp., grants from the National Institute of Allergy and Infectious Diseases (R21AI13490), and the National Institute of Health Medical Scientist Training Program (T32GM007618). Additional support was provided by the Histiocytosis Association of America; Buster Posey Family Pediatric Cancer Pilot Award; the Campini Family Foundation; the Pepp Family Foundation; St. Baldrick's Foundation; a Genentech Foundation Research Fellowship; and ALSAC, the fundraising and awareness organization of St. Jude.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is leading the way the world understands, treats and cures childhood cancer and other life-threatening diseases. It is the only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. Treatments developed at St. Jude have helped push the overall childhood cancer survival rate from 20% to 80% since the hospital opened more than 50 years ago. St. Jude freely shares the breakthroughs it makes, and every child saved at St. Jude means doctors and scientists worldwide can use that knowledge to save thousands more children. Families never receive a bill from St. Jude for treatment, travel, housing and food -- because all a family should worry about is helping their child live. To learn more, visit or follow St. Jude on social media at @stjuderesearch.

St. Jude Children's Research Hospital

Related Cytokines Articles:

A bifidobacterial protein that can reduce inflammation in COVID-19 found by a RUDN geneticist
A geneticist from RUDN University studied the effect of Bifidobacterium (intestinal bacteria) on the inflammatory process and discovered that their surface protein is capable of stopping excessive or uncontrollable inflammation, like the one observed in COVID-19 patients.
Does the COVID-19 cytokine storm exist?
Cytokines play a crucial role in the immune response. If this immune response is too strong, also known as ''cytokine storm'', it can cause harm to the patient.
St18 is a negative regulator of VEGF
A research team led by Kenta Maruyama M.D., Ph.D. from National Institute for Physiological Sciences explored the role of St18 in the regulation of VEGF expression.
Cytokine implicated in HLH treatment resistance
Research sheds light on cytokine storm syndromes and how ruxolitinib may benefit patients with hemophagocytic lymphohistiocytosis.
Proteins may halt the severe cytokine storms seen in COVID-19 patients
A team of MIT researchers has developed specialized antibody-like receptor proteins that they believe could soak up the excess cytokines produced during a cytokine storm.
Cancer: The immune system attacks tumors remotely
How does the immune system act to limit tumor development?
Scientists discover how rogue communications between cells lead to leukemia
New research has deciphered how rogue communications in blood stem cells can cause leukemia.
Secretome of pleural effusions associated with non-small cell lung cancer (NSCLC) and malignant...
Cryopreserved cell-free PE fluid from 101 NSCLC patients, 8 mesothelioma and 13 with benign PE was assayed for a panel of 40 cytokines/chemokines using the Luminex system.
Danish-American research presents new ways of developing treatment of chronic inflammation
Researchers from Aarhus University Hospital and Aarhus University in Denmark in collaboration with researchers from Colorado in the United States have found a new way to treat the inflammation involved in chronic diseases such as psoriasis, asthma and HIV.
Confining cell-killing treatments to tumors
Researchers at the Koch Institute for Integrative Cancer Research at MIT have developed a technique to prevent cytokines escaping once they have been injected into the tumor, by adding a Velcro-like protein that attaches itself to the tissue.
More Cytokines News and Cytokines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.