Transient increase in blood pressure promotes some blood vessel growth

June 12, 2020

Blood vessels are the body's transportation system, carrying oxygen and nutrients to cells and whisking away waste. But this vital mission can also be co-opted by tumors or break down as a result of disease, and this process has been poorly understood. An international collaborative team led by a scientist at Tokyo University of Agriculture and Technology (TUAT) in Japan has discovered a mechanism by which the growth of these vessels' inner liner is stimulated, which may lead to therapeutics that could cut vessels off from tumors or help rebuild vessels in degenerative diseases.

The results were published on April 2 in Communications Biology, a Nature journal.

The researchers studied how the endothelial cells lining the inside of blood vessels respond to hydrostatic pressure, which is the pressure that forces blood through the vessels. The single layer of these cells forms a barrier between vessels and tissue, which controls fluid's flow in the blood vessel walls.

"Blood vessels are constantly exposed to stimuli such as fluid shear stress, cyclic tensile force and hydrostatic pressure," said Daisuke Yoshino, paper author and associate professor at the TUAT.

"Although the detailed mechanisms about cellular responses to shear stress and tensile force have been studied, we have not well understood how hydrostatic pressure affects vascular function."

Yoshino and his team applied the pressure to endothelial cells, equivalent of a person working out, to investigate how they sense hydrostatic pressure and convert it into biochemical signals, inducing vascular responses. They found that the increase in pressure triggered a water transfer through a channel called aquaporin 1, which activated a protein signaling channel called Ras-ERK. This process induced endothelial cell growth, indicating a clear connection between pressure stimulation and intracellular biochemical signals, according to Yoshino.

"Our ultimate goal is to comprehensively clarify how the mechanisms described in this study are altered by differences in the blood pressure conditions, such as local conditions, magnitude and mode by which it is exerted," Yoshino said. "We hope the clarified mechanisms will lead to the development of new treatments for diseases invoking abnormalities in vascular formation, such as venous malformations."

This work was supported in part by the Japan Society for the Promotion of Science, the Japan Science and Technology Agency and the Mechanobiology Institute at the National University of Singapore.

Yoshino holds appointments in the Division of Advanced Applied Physics at the Institute of Engineering, in the Department of Biomedical Engineering in the Faculty of Engineering and in the Department of Applied Physics in the Graduate School of Engineering at TUAT. Other contributors include Kenichi Funamoto and Masaaki Sato, both of whom are affiliated with the Frontier Research Institute for Interdisciplinary Sciences at Tokyo University. Funamoto is also affiliated with the Institute of Fluid Science at Tohoku University. Other authors include Kakeru Sato, previously of the Graduate School of Engineering at Tohoku University and now at the Tokyo Gas Co., Kenry of the Department of Biomedical Engineering at National University of Singapore and Chwee Teck Lim of Mechanobiology Institute, the Department of Biomedical Engineering and the Institute for Health Innovation and Technology at the National University of Singapore.
Original publication:

Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling. Daisuke Yoshino*, Kenichi Funamoto, Kakeru Sato, Kenry, Masaaki Sato & Chwee Teck Lim*. Commun Biol 3, 152 (2020).

DOI 10.1038/s42003-020-0881-9

*: corresponding author

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit


Daisuke Yoshino, Ph.D.
Associate Professor
Division of Advanced Applied Physics, Institute of Engineering,
Department of Biomedical Engineering, Faculty of Engineering,
Department of Applied Physics, Graduate School of Engineering,
TUAT, Japan

Tokyo University of Agriculture and Technology

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to