Pitt study shows optical fields can modify electrons in metal

June 12, 2020

PITTSBURGH Research coauthored by team from the Department of Physics and Astronomy reveals that optical fields have the ability to modify electronic properties of a solid.

The paper, "Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light," describes how applying intense optical fields to electrons in metals can change how electrons flow between the ions. Researchers discovered applying optical pulses in the range of 10-14 seconds to a copper surface can change its electronic properties, for example, its electron conduction or optical reflection.

The paper was coauthored by Hrvoje Petek, the R.K. Mellon Professor of Physics and Astronomy, graduate students Andi Li and Zehua Wang and Marcel Reutzel of The University of Göttingen in Germany. It was published in Nature Communications in May.

The results answer questions about the nature of the electronic properties of solids that have only recently been anticipated, said Petek.

"It has long been known that one can apply strong optical fields and change electronic properties of atoms and molecules. This is called "dressing" of the electronic structure. Solids are much more dense than atoms, so it has not been clear whether applying a strong optical field would first damage the material or dress its electronic structure. The researchers found that metals are rather robust, and judicious application of optical fields will actually cause the dressing to occur," he said.

Petek said the results open the door for new areas of research and could introduce a range of new innovations by using light to control the properties of matter.

"One can think of how to apply such fields to create new properties of solids with potential applications in conventional electronics, quantum computing, or entirely new applications where one introduces light into solids to generate entirely new properties on very short time scales," he said. "Theorists have considered that such dressing could be used to study in a laboratory how black holes evaporate."

The team will next explore how to combine several different metals, along the lines of those found in electronic devices, to determine if it's possible to dress their electronic structure without causing damage.

University of Pittsburgh

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.