Molecular "Ice Cubes" Reveal Secrets Of Water's Properties

June 12, 1997

WEST LAFAYETTE, Ind. -- Nature's tiniest ice cubes are providing new information about the unique properties of water.

A Purdue University study shows that when water molecules in the gas phase are cooled to very low temperatures, tiny clusters containing eight water molecules naturally arrange themselves into small cubic structures.

In addition, these tiniest cubes came in two forms, which had the same mass and structure, but differed in the arrangement of the hydrogen bonds within the cubes.

The study, which appears in the June 13 issue of the journal Science, was conducted by chemist Timothy Zwier, postdoctoral associate Caleb Arrington, and graduate students Christopher Gruenloh and Joel Carney.

"These findings verify what theorists have predicted for years; namely, that the eight water molecules preferentially form a cubic structure," Zwier says. "It also provides the first evidence that even in very small water clusters, water has the capacity to arrange its hydrogen bonds in several distinct orientations, much as it does in forming the many different solid phases of ice."

The study gives the first glimpse of nature's tiniest ice cubes and provides new information on the unique ability of water to hydrogen bond to itself to form large networks. This ability gives water many of its unique properties, including the unusual capacity of solid ice to float on liquid water.

Water, known as the "universal solvent," also has the unusual ability to dissolve a variety of substances. "Our understanding of water is so important because all biological processes, including those occurring in the human body, take place in a water-based solution", Zwier says.

What makes water unique are the hydrogen bonds that form between water molecules and other molecules. Each V-shaped molecule of water contains one oxygen atom centered between two hydrogen atoms. The molecule is held together by chemical bonds that create a slightly negative charge on the oxygen atom and a small positive charge on each of the hydrogen atoms.

This unequal charge distribution makes the water molecule extremely "sociable", eager to bond with other water molecules, and gives water its unequaled ability to dissolve compounds.

To analyze how these hydrogen bonds form in small water clusters, Zwier and co-workers used a high-pressure gas expansion to cool water molecules in the gas phase to temperatures as low as 1 degree Kelvin, the equivalent of -457 degrees Fahrenheit.

As the water cooled and condensed into solid clusters, some of the clusters incorporated a single benzene molecule on their surface. The benzene molecule allowed the various clusters to be identified by size using lasers to "weigh" the clusters.

Once he identified the cubic clusters of eight, Zwier and his colleagues applied an infrared laser to excite the clusters, causing the hydrogen bonds in the tiny cubes to stretch and contract. By analyzing the wavelengths of this spectrum, he was able to determine the molecular arrangement of the hydrogen bonds within the cubes.

He found that the cubes were identical in mass and structure, with each cube made up of four molecules of water stacked on top of the other four molecules. Though the hydrogen bonds in the top layer of each cube were oriented in the same manner, the hydrogen bonds in the bottom layers of the cubes took one of two possible arrangements, with the bonds facing either the same direction or opposite direction as the bonds in the top layer of the cube.

"Since the two structures are virtually identical in energy, the orientation that a particular cluster takes depends on the specific collisions the cluster undergoes while it is being made," Zwier says.

"It is interesting that already with only eight water molecules, water makes up two different 'phases' which differ only in the orientations of the hydrogen bonds," he says. "This is the beginnings of what we know to be true in the solid phase. Water has more solid phases--nine total--than any other known pure substance because it can form phases which differ only in the orientations of the hydrogen bonds."
Photo Captions

These tiny "ice cubes" show two different solid phases of water. The two cubes differ only in the arrangement of the hydrogen bonds in the bottom layer of the cubes. The D2 structure at the top shows hydrogen bonds in the top and bottom layers oriented in opposite directions. The S4 structure shows the bonds in the top and bottom layers oriented in the same direction. (Purdue graphic by Timothy Zwier)

Color photo, electronic transmission, and Web and ftp download available. Photo ID: Zwier/water

Purdue University

Related Water Molecules Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.

How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

Read More: Water Molecules News and Water Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to