Software to make testing of new generic drugs more thorough

June 13, 2001

COLUMBUS, Ohio -- Drug companies may evaluate new generic drugs more thoroughly than ever before, with software developed at Ohio State University.

Drug companies must prove that the generic form of a drug functions like the original before they can receive approval from the Food and Drug Administration (FDA), explained Jean Powers, professor emeritus of statistics and veterinary clinical sciences at Ohio State.

Powers and her colleagues formulated a new, improved statistical method for comparing drugs, and Edward Herderick, manager of the Biomedical Engineering Computer Center at Ohio State, wrote the software. The Ohio State software

compares sets of curves that chart drug characteristics, and takes into account all the data relating to a particular drug function.

"The FDA already has an excellent procedure for assuring that the generic drug matches the original, but we believe our procedure represents a potential improvement," she said. She added that the same procedures she, Herderick, and their colleagues developed could be adapted to compare any two sets of curves.

Powers and Herderick collaborated with Robert Bartoszynski, a former professor of statistics at Ohio State who died in 1998, and Joseph A. Pultz, Bartoszynski's former graduate student, who is now a statistician at DuPont Pharmaceuticals. A description of the software and the statistical methodology appeared in a recent issue of the journal Pharmacological Research.

In the article, the researchers show how the software compares dissolution curves -- graphs that map how quickly a drug is released into the body. This is one of several criteria that drug companies must address when seeking approval for a generic drug. Dissolution is an important factor for the consumer of a drug, since the drug must be released into the body before it can begin to take effect, Powers said.

"You wouldn't want to buy two different brands of aspirin and find out that one can begin to relieve your headache in half an hour and the other can't begin to relieve it for two hours," said Powers.

The procedure to compare the dissolution of two drugs is computationally intensive, Powers and Herderick explained. The current approach is for the drug company statisticians to chart the dissolution of each drug graphically, take averages of multiple graphs, and compare points along the averaged graphs to see if they match up.

With the Ohio State software, statisticians could compare all points of the graphs at once -- a much more comprehensive analysis. For instance, in a typical dissolution analysis, a statistician would examine six graphs from the original drug, and six from the generic drug, for 12 graphs total. Then he or she would combine the 12 graphs into two average graphs, and compare selected points along both.

The Ohio State software can do it in only one-tenth of a second of computer time, and still examine all the points along the curves, instead of just comparing selected points on the two average curves.

If a statistician wanted to examine a larger data set -- say, 24 curves instead of 12 -- the new software could do that computation in only 10 minutes, Herderick said. He thinks that even larger computations will probably become practical in the future, as faster computers are developed.

Drug makers who are interested in testing the software can contact Herderick. The results in the Pharmacological Research paper are based on simulated dissolution curves, so he and Powers are eager to test the software in a real-world manufacturing situation. Several companies have already expressed interest.

The FDA partially funded this work. The Ohio State researchers are currently seeking more funding to extend the software to include the analysis of other drug functions besides dissolution, as well as additional statistical designs that drug companies commonly use. For instance, Powers said, the software could compare time-concentration graphs, which represent the length of time a quantity of a drug stays in the body.

The software holds applications outside of drug development, she added. "Suppose you were designing a new fertilizer," she said. "If you changed the formula, you could use our software to see if a particular function changed."

Herderick wrote the software in the FORTRAN computer language for a Windows PC, but said it would work just as well on other operating platforms. He also said a drug company statistician wouldn't need any special training to use the software.
Contact: Jean Powers, 614-292-6661; Edward Herderick, 614-292-1531; Written by Pam Frost Gorder, 614-292-9475;

Ohio State University

Related Drugs Articles from Brightsurf:

The danger of Z-drugs for dementia patients
Strong sleeping pills known as 'Z-drugs' are linked with an increased risk of falls, fractures and stroke among people with dementia, according to new research.

Wallflowers could lead to new drugs
Plant-derived chemicals called cardenolides - like digitoxin - have long been used to treat heart disease, and have shown potential as cancer therapies.

Bristol pioneers use of VR for designing new drugs
Researchers at the University of Bristol are pioneering the use of virtual reality (VR) as a tool to design the next generation of drug treatments.

Towards better anti-cancer drugs
The Bayreuth biochemist Dr. Claus-D. Kuhn and his research team have deciphered how the important human oncogene CDK8 is activated in cells of healthy individuals.

Separating drugs with MagLev
The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie.

People are more likely to try drugs for the first time during the summer
American teenagers and adults are more likely to try illegal or recreational drugs for the first time in the summer, a new study shows.

Drugs used to enhance sexual experiences, especially in UK
Combining drugs with sex is common regardless of gender or sexual orientation, reveals new research by UCL and the Global Drug Survey into global trends of substance-linked sex.

Promising new drugs for old pathogen Mtb
UConn researchers are targeting a metabolic pathway, the dihydrofolate reductase pathway, crucial for amino acid synthesis to treat TB infections.

Can psychedelic drugs heal?
Many people think of psychedelics as relics from the hippie generation or something taken by ravers and music festival-goers, but they may one day be used to treat disorders ranging from social anxiety to depression, according to research presented at the annual convention of the American Psychological Association.

New uses for existing antiviral drugs
Broad-spectrum antiviral drugs work against a range of viral diseases, but developing them can be costly and time consuming.

Read More: Drugs News and Drugs Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to