New discovery -- copepods share 'diver's weight belt' technique with whales

June 13, 2011

A deep-sea mystery has been solved with the discovery that the tiny 3 mm long marine animals, eaten by herring, cod and mackerel, use the same buoyancy control as whales.

Reporting this week in the journal Limnology and Oceanography, researchers from British Antarctic Survey describe how Southern Ocean copepods - a crustacean rich in omega-3 oil - 'hibernates' in the deep ocean during winter when seas are stormy and food scarce. To reach the ocean depths the copepod's oily body fluids undergo a remarkable transformation. As the animals swim deeper, water pressure triggers a process that converts their oil to a more solid form rather like the consistency of butter. This change in density acts like a 'diver's weight belt', enabling them to be neutrally buoyant and spend winter in deep waters without wasting energy on constant swimming.

Lead author from British Antarctic Survey, Dr David Pond says, "This work is of particular value from a number of angles. Copepods may be exceptionally small creatures but they represent a vast reserve of ocean 'biomass' that provides a crucial component of the food chain.

"We've known for some time that there is a link between the copepod's large stores of energy-rich oil and 'hibernation' behaviour, but this is the first time that we've been able to understand the exact relationship between these two elements in the animal's life cycle. This discovery is a breakthrough and will help enormously with the development of simulations of their behaviour.

It's fascinating also to think that the largest and the smallest marine animals share this remarkable ability to change their body fats to adjust their buoyancy."
-end-
Issued by British Antarctic Survey Press Office.

British Antarctic Survey media contact: Athena Dinar, Tel: +44 (0)1223 221414; email: amdi@bas.ac.uk; Mobile: +44 07736 921693

Author contacts: Dr David Pond, Tel: +44 (0)1223 221366; email: dwpo@bas.ac.uk
Dr Geraint Tarling, Tel: +44 (0)1223 221596; email: gant@bas.ac.uk

The paper, Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus by David W Pond and Geraint A Tarling is published in Limnology and Oceanography. 56: 1310-1318. http://www.aslo.org/lo/toc/vol_56/issue_4/index.html

Notes for editors

Photos of copepods and scientists collecting samples from a the research ship RRS James Clark Ross are available from the British Antarctic Survey Press Office as above.

Calanoid copepods are key players in the study of biological oceanography. They are the largest constituent of zooplankton biomass in the oceans, are a major conduit in global carbon cycles and food for commercially important species of fish.

A key feature of the life-cycle of these organisms is that they overwinter at great depths in the world's oceans in diapause, a state analogous to hibernation. The surface waters of the oceans in winter are hostile environments with low food availability and a high predation risk. The seasonal descent of calanoid copepods to the deep ocean enables them to overwinter in the comparative safety of the deep sea and thereby reduce mortality. A second notable characteristic of calanoid copepods is that they contain high amounts of lipid and although it has long been recognised that a clear link exists between the diapause behaviour and the large stores of lipid, the exact relationship between these two key elements in the copepod life-history has remained elusive.

The research involved sampling of copepods from shelf seas and open ocean environments in the Southern Ocean over seasonal cycles and examining the physical properties of their lipids under different pressures in the laboratory.

To sustainably manage fish populations in the face environmental change, fisheries scientists based in the UK and overseas need to be able to accurately model the life-cycles of the key species of calanoid copepods to predict how environmental change will impact on copepod population dynamics and distributions. The discovery made by BAS scientists is a major step towards achieving this goal.

The Cambridge-based British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around £45 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft, BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council. More information about the work of the Survey can be found at: www.antarctica.ac.uk

British Antarctic Survey

Related Whales Articles from Brightsurf:

Blue whales change their tune before migrating
While parsing through years of recorded blue whale songs looking for seasonal patterns, researchers were surprised to observe that during feeding season in the summer, whales sing mainly at night, but as they prepare to migrate to their breeding grounds for the winter, this pattern reverses and the whales sing during the day.

Shhhh, the whales are resting
A Danish-Australian team of researchers recommend new guidelines for noise levels from whale-watching boats after having carried out experiments with humpback whales.

Fishing less could be a win for both lobstermen and endangered whales
A new study by researchers at Woods Hole Oceanographic Institution (WHOI) found that New England's historic lobster fishery may turn a higher profit by operating with less gear in the water and a shorter season.

North Atlantic right whales are in much poorer condition than Southern right whales
New research by an international team of scientists reveals that endangered North Atlantic right whales are in much poorer body condition than their counterparts in the southern hemisphere.

Solar storms could scramble whales' navigational sense
When our sun belches out a hot stream of charged particles in Earth's general direction, it doesn't just mess up communications satellites.

A better pregnancy test for whales
To determine whale pregnancy, researchers have relied on visual cues or hormone tests of blubber collected via darts, but the results were often inconclusive.

Why whales are so big, but not bigger
Whales' large bodies help them consume their prey at high efficiencies, a more than decade-long study of around 300 tagged whales now shows, but their gigantism is limited by prey availability and foraging efficiency.

Whales stop being socialites when boats are about
The noise and presence of boats can harm humpback whales' ability to communicate and socialise, in some cases reducing their communication range by a factor of four.

Endangered whales react to environmental changes
Some 'canaries' are 50 feet long, weigh 70 tons, and are nowhere near a coal mine.

Stranded whales detected from space
A new technique for analysing satellite images may help scientists detect and count stranded whales from space.

Read More: Whales News and Whales Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.