Genome offers clue to functions of destructive wheat fungus

June 13, 2011

WEST LAFAYETTE, Ind. - One of the world's most destructive wheat pathogens is genetically built to evade detection before infecting its host, according to a study that mapped the genome of the fungus.

Stephen Goodwin, a Purdue and U.S. Department of Agriculture research plant pathologist, was the principal author on the effort to sequence the genome of the fungus Mycosphaerella graminicola, which causes septoria tritici blotch, a disease that greatly reduces yield and quality in wheat. Surprisingly, Goodwin said, the fungus had fewer genes related to production of enzymes that many other fungi use to penetrate and digest surfaces of plants while infecting them.

"We're guessing that the low number of enzymes is to avoid detection by plant defenses," said Goodwin, whose findings were published in the early online edition of the journal PLoS Genetics.

Enzymes often break down plant cell walls and begin removing nutrients, leading to the plant's death. M. graminicola, however, enters the plant through stomata, small pores in the surface of leaves that allow for exchange of gases and water.

Goodwin said the fungus seems to lay dormant between plant cells, avoiding detection. It later infects the plant, removing necessary nutrients and causing disease.

With the sequenced genome, scientists hope to discover which genes cause toxicity in wheat and determine ways to eliminate that toxicity or improve wheat's defenses against the fungus. Septoria tritici blotch is the No. 1 wheat pathogen in parts of Europe and is probably third in the United States, Goodwin said.

The genome also showed that M. graminicola has eight disposable chromosomes that seem to have no function. Goodwin said that plants with dispensable chromosomes have clear mechanisms for their maintenance, but no such mechanisms were obvious in the fungus.

Goodwin said the extra chromosomes were probably obtained from another species more than 10,000 years ago and have likely been retained for an important function, but it's not clear what that function is.

"That's a long time for these chromosomes to be maintained without an obvious function," he said. "They must be doing something important. Finding out what that is will be a key area for future research."
-end-
Goodwin collaborated with 57 scientists from 24 other institutions. The U.S. Department of Energy's Joint Genome Institute and Plant Research International of The Netherlands were equal partners in the research.Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110613GoodwinGenome.html

Purdue University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.