Promising new target for stifling the growth and spread of cancer

June 13, 2011

Cancer and chronic inflammation are partners in peril, with the latter increasing the likelihood that malignant tumors will develop, grow and spread. Researchers at the University of California, San Diego School of Medicine say they've identified a tumor inflammation trigger that is common to most, if not all, cancers. And using existing inhibitory drugs, the scientists were able to dramatically decrease primary tumor growth in animal studies and, more importantly, halt tumor progression and metastasis.

The findings appear in the June 14 issue of the journal Cancer Cell, authored by Judith A. Varner, PhD, professor of medicine at the UC San Diego Moores Cancer Center, and colleagues in the UCSD School of Medicine and at the University of Torino, Italy.

When cancer cells appear in the body, they often provoke an immune system response. Under some circumstances, this is a good thing. But Varner and colleagues were able to show that when responding myeloid or white blood cells called macrophages are drawn to invasive cancer cells, the result can be considerable trouble for patients. Rather than suppressing the cancer, the myeloid cells are tricked by the tumor into aiding and abetting its growth and spread. Scientists have long recognized that myeloid cells can invade and promote tumor growth. But until now it was not fully appreciated how this hijacking occurs and whether there are ways to disrupt this process by suppressing the trigger that leads to myeloid cell recruitment into tumors.

Probing more deeply into the tumor inflammation process, the UCSD research team identified a range of tumor-produced molecules that attract these dangerous myeloid cells. They also pinpointed the specific trigger on myeloid cells enabling them to invade the tumor environment and accelerate tumor growth and metastasis. It is an enzyme called PI-3 kinase gamma on myeloid cells that turns on an adhesion receptor allowing the cells to enter tumors.

When researchers blocked the activity of PI-3-kinase-gamma, either genetically or through the use of a drug designed for this purpose, myeloid cells were blocked access into tumors, resulting in reduced tumor growth and a dramatic decrease in metastasis. Without the recruitment of myeloid cells, Varner said, the capability of a cancer tumor to grow is largely stifled.

"Most strategies targeting the role of myeloid cells in cancer have focused on reducing their expression of inflammatory molecules," Varner explained. "We've found a single convergent point - the PI-3 kinase-gamma enzyme - that, when blocked, appears to result in significant suppression of tumor inflammation and growth regardless of the initiating event. It could be a very important therapeutic target for future cancer treatments and could impact most, if not all, types of solid cancer."

Michael Karin, PhD, distinguished professor of pharmacology in UCSD's Laboratory of Gene Regulation and Signal Transduction and a pioneer in inflammation research, agreed: "I think that the inhibition of PI-3K activity represents a very interesting and promising approach for inhibition of tumor-associated inflammation. It seems to fully normalize the tumor microenvironment and provide a new addition to our armamentum of anti-cancer drugs."

Varner said a number of biotechnology companies are pursuing potential drugs using PI-3-kinase inhibitors to treat diseases from cancer to heart disease to arthritis. The PI-3-kinase-gamma protein may be a particularly promising therapeutic target, because it is not widely expressed in the body, and its inhibition would likely produce fewer side effects than many therapeutics.
-end-
Co-authors of the research are Michael C. Schmid, Christie J. Avraamides, Philippe Foubert, Joan R.E. Manglicmot, Xiaodan Song and Wolfgang Wrasidlo of the UCSD Moores Cancer Center; Holly C. Dippold and Mark H. Ginsberg, UCSD Department of Medicine; Irene Franco and Emilio Hirsch, Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, School of Medicine, University of Torino, Italy; Lesley G. Ellies, UCSD Department of Pathology; Sara L. Blair, UCSD Department of Surgery; and Lissette M. Acevedo and David A. Cheresh, UCSD Moores Cancer Center and UCSD Department of Pathology.

Funding for this research came, in part, from grants from the National Institutes of Health and the California Tobacco Related Disease Research Program.

University of California - San Diego

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.