Advanced cancers destined to recur after treatment with single drugs that 'target' tumor cells

June 13, 2012

Targeted cancer cell therapies using man-made proteins dramatically shrink many tumors in the first few months of treatment, but new research from Johns Hopkins scientists finds why the cells all too often become resistant, the treatment stops working, and the disease returns.

In a study of 28 advanced colon cancer patients treated with the monoclonal antibody panitumumab, the Johns Hopkins Kimmel Cancer Center team reports that drug-resistance tumor cell mutations appear in the blood of patients five to seven months later, and that low levels of these mutations exist in nearly all tumors before the therapy begins, making the cancers predestined to recur.

"These resistance mutations develop by chance as cancer cells divide so that tumors always contain thousands of resistance cells," says Luis Diaz, M.D., associate professor of oncology and director of the Swim Across America laboratory at Johns Hopkins, who says the findings likely apply to any targeted cancer therapy.

"The best chance for a cure is when a tumor is very small, but when the cancer is advanced, our research quantifies the probability that we can achieve cures with single-agent targeted therapies," says Bert Vogelstein, M.D., professor and co-director of the Ludwig Center at Johns Hopkins and, Howard Hughes Medical Institute investigator. "Long-term remissions of advanced cancers will be nearly impossible with single targeted agents," he adds.

The Johns Hopkins scientists analyzed blood samples taken from 28 patients with advanced colorectal cancers. These patients were enrolled in a clinical trial of panitumumab, one of a new and growing class of monoclonal antibodies, or synthetic proteins that homes in on cancer cells' vital growth pathways. In the case of panitumumab, the agent targets a growth-factor receptor called EGFR. Patients most likely to respond to the drug also have normal copies of the KRAS gene in their tumors.

Twenty-four of the 28 patients in the study had normal KRAS gene copies in their tumors, and four had mutations in KRAS, serving as a control group. Blood samples were taken before beginning the therapy and at four-week intervals during the therapy, for a total of 169 combined blood draws.

Virtually all cancers shed DNA material into the blood, according to the researchers, and provide an easy route to collecting molecular evidence from lesions typically inaccessible for surgical biopsy. "The amount of tumor DNA found in the blood is akin to tests used to determine HIV viral load," says Diaz.

In their analysis, reported online June 13 in the journal Nature, the scientists found that nine of the 24 patients with normal KRAS genes (38 percent) exhibited KRAS mutations detectable in the blood within five to seven months of beginning therapy. KRAS mutations were detected in three patients before imaging scans showed metastatic tumor growth. Then, working with Martin Nowak, Ph.D., and his team from Harvard University, the investigators used mathematical models to calculate when KRAS mutations likely originated. Nowak and colleagues determined that KRAS mutations were present prior to the initiation of treatment with panitumumab.

"The probability that the mutations were absent at the beginning of treatment is exceedingly low," says Vogelstein, leading the team to conclude that the development of drug-resistance is a fait accompli. The time it takes for cancers to recur is determined simply by how long it takes cancer cells with mutant genes to multiply, he adds.

The research team says that combination therapies are the best chance for longer remissions. "The good news is that there is a limited number of pathways that go awry in cancer, so it should be possible to develop a small number of agents that can be used in a large number of patients," says Vogelstein. "However, I hope this research will help stimulate the testing of new drugs as combination therapies much earlier in the drug approval process than the current norm."
-end-
The research was funded by the Virginia and D.K. Ludwig Fund for Cancer Research, the National Colorectal Cancer Research Alliance, Swim Across America, and National Institutes of Health (NIH) grants (CA43460, CA57345, CA62924, N01-CN-43309 and CA006973).

Other scientists involved in the research include Isaac Kinde, Jian Wu and Kenneth W. Kinzler from Johns Hopkins, Richard Williams and Kelly S. Oliner from Amgen Inc., Randolf Hecht from UCLA, Jordan Berlin from Vanderbilt University, and Benjamin Allen, Ivana Bozic, and Johanness Reiter from Harvard University.

Johns Hopkins Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.