New membrane-synthesis pathways in bacteria discovered

June 13, 2014

Biologists at the Ruhr-Universität Bochum (RUB) have discovered new mechanisms used by bacteria to manufacture lipids, i.e. fat molecules, for the cell membrane. Those mechanisms are a combination of familiar bacterial synthesis pathways and of such that occur in higher organisms. Thus, the team headed by Prof Dr Franz Narberhaus and Dr Roman Moser has debunked the long-standing theory that lipid production in bacteria differs substantially from that in higher organisms. The results have been published in the journal Molecular Microbiology.

Potential for the pharmaceutical industry

Many drugs are coated with lipids, because it facilitates uptake by human cells. Synthesising lipids, however, is often a time-consuming and expensive process. Enzymes with new properties may be used to ease manufacture and to reduce production costs. The RUB researchers at the Chair of Microbial Biology have now discovered enzymes that are able to generate a number of different lipids. "The discovery of such biological pathways and their biotechnological optimisation offer great potential for industrial lipid production," says Roman Moser.

Enzyme can produce several lipids

The biologists studied lipid biosynthesis in the bacterium Xanthomonas campestris, a plant pathogen. One of the most common bacterial lipids, phosphatidylethanolamine, is produced by the bacterium in different ways: one of them has been long known; another one came as a complete surprise. The enzyme that plays a decisive role in the newly discovered synthesis pathway can also synthesise a structurally completely different lipid, i.e. cardiolipin. "It's conceivable that, in its competitive natural environment, this versatile enzyme helps Xanthomonas gain an advantage over other bacteria," speculates Franz Narberhaus.

Studying more than just model organisms

Xanthomonas can also produce the lipid lecithin that typically occurs in plants and animals, but rarely in bacteria. The RUB team discovered that Xanthomonas does not use any of the two bacterial synthesis pathways hitherto known for this purpose. "In order to challenge the established theories regarding biosynthesis of the cell membrane, it will be worth studying the processes in more than just the conventional model organisms," says Prof Narberhaus.
-end-
Bibliographic record

R. Moser, M. Aktas, F. Narberhaus (2014): Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway, Molecular Microbiology, DOI: 10.1111/mmi.12492

R. Moser, M. Aktas, C. Fritz, F. Narberhaus (2014): Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria, Molecular Microbiology, DOI: 10.1111/mmi.12603

Further information

Prof Dr Franz Narberhaus, Chair of Microbial Biology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/0234/32-23100, email: franz.narberhaus@rub.de

Dr Roman Moser, Chair of Microbial Biology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/234/32-25624, email: roman.moser@gmx.de

Ruhr-University Bochum

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.