Researchers 'cage' water to see it change form

June 13, 2014

Scientists are using a pioneering method of 'caging' and cooling water molecules to study the change in orientation of the magnetic nuclei at the centre of each hydrogen atom - a process which transforms the molecule from one form of water to another.

By trapping water molecules in carbon spheres and cooling them, scientists at the universities of Southampton, Nottingham and Columbia University in New York, have been able to follow the change in form (or isomer) of the molecules.

The results of this work may one day help to enhance the diagnostic power of MRI scans.

Water molecules can exist as one of two isomers, depending on how the spins of their two hydrogen atoms are orientated: ortho, where the nuclear spins are parallel to one another, and para, where the spins are antiparallel.

Scientists believe that any given molecule can transform from ortho- into para- spin states and vice versa, a process known as nuclear spin conversion.

"Currently, mechanisms for this conversion are not completely understood, nor how long it takes the molecules to transform from one spin isomer to the other," said Salvatore Mamone, a post-doctoral physicist at the University of Southampton and lead author on the JCP paper. "To study this, we had to figure out how to reduce the strong intermolecular interactions that are responsible for grouping of molecules and lowering the rotational mobility of the water molecules."

The answer was to isolate the water molecules from one-another by 'caging' them in fullerene (C60, also known as a buckyball) spheres.

Chemical reactions are used to open a hole in the spheres where water molecules can be injected, before the "cages" are closed, to form a complex referred to as H2O@C60. "At the end of this synthetic preparation nicknamed 'molecular surgery,' we find that 70 to 90 percent of the cages are filled, giving us a significant quantity of water molecules to examine," Mamone said. "Because the molecules are kept separate by the cages, there is a large rotational freedom that makes observation of the ortho and para isomers possible."

The fullerene cages prevent water molecules from freezing, meaning that the hydrogen atoms continue to spin and conversion is still able to occur.

In their experiment, the researchers quickly cooled the individual H2O@C60 samples from 50 Kelvin (minus 223 degrees Celsius) to 5 K (minus 268 degrees Celsius) and then monitored their NMR (Nuclear Magnetic Resonance) signal every few minutes over several days.

"As the observed NMR signal is proportional to the amount of ortho-water in the sample (para-water "NMR silent"), we can track the percentages of ortho and para isomers at any time and any temperature," Mamone explained. "At 50 K, we find that 75 percent of the water molecules are ortho, while at 5 K, they become almost 100 percent para. Therefore, we know that after the quick temperature jump, equilibrium is restored by conversion from ortho to para--and we see that conversion in real time."

The research team now plans to study the roles of isomer concentrations and temperature in the conversion process, the conversion of para-water to ortho ('back conversion'), how to detect single ortho- and para-water molecules on surfaces, and spin isomers in other fullerene-caged molecules.
Notes to editors

The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 23,000 students, around 5000 staff, and an annual turnover well in excess of £435 million, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

For further information contact:

Steven Williams, Media Relations, University of Southampton, Tel: 023 8059 2128, email:

Follow us on twitter:

Like us on Facebook:

University of Southampton

Related Water Molecules Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future
Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research.

How a crystalline sponge sheds water molecules
How does water leave a sponge? In a new study, scientists answer this question in detail for a porous, crystalline material made from metal and organic building blocks -- specifically, cobalt(II) sulfate heptahydrate, 5-aminoisophthalic acid and 4,4'-bipyridine.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

Unique structural fluctuations at ice surface promote autoionization of water molecules
Hydrated protons at the surface of water ice are of fundamental importance in a variety of physicochemical phenomena on earth and in the universe.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

Read More: Water Molecules News and Water Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to