Nav: Home

Miniature scaffolding could support fight against superbugs

June 13, 2016

Amsterdam, June 13, 2016 - Tiny molecular scaffolding that joins molecules together could be the key to our battle against antibiotic resistance. Research published in Bioorganic & Medicinal Chemistry Letters shows that carbon nanodot scaffolding assembled with small molecules called polyamines can kill some dangerous drug-resistant bacteria, including Acinetobacter baumanii and Klebsiella pneumonia.

According to the World Health Organization, antimicrobial resistance is one of the biggest public health threats we face today; there were about 480,000 new cases of multidrug-resistant tuberculosis in 2013. Standard treatments are failing and there is an urgent need to develop more effective antibiotics.

Scientists working in this area have found that some large positively charged compounds, called polycationic dendrimers, are antimicrobial. The researchers behind the new study, from Winston-Salem State University in the US and Universiti Malaysia Sarawak in Malaysia, have found that adding similar, but smaller polycationic molecules onto a new kind of material called carbon nanodots makes them even better at killing drug-resistant bacteria.

"We urgently need new and better antimicrobial materials if we are to tackle drug-resistant bacteria," said Dr Maria Ngu-Schwemlein, lead author of the study from Winston-Salem State University. "Our study shows that carbon nanodots can serve as a molecular scaffold for building antimicrobial materials; it's exciting because carbon nanodots are relatively easy and cheap to make, they're non-toxic and soluble in water."

Carbon nanodots are tiny particles of carbon that are useful in imaging, sensing, drug delivery and many other applications. They can be made easily from starch and they're non-toxic, making them suitable for use in medicine.

There are chemical groups coating the surface of carbon nanodots that can help control the fluorescence properties of these tiny dots. This coating can also turn the nanodots into a molecular scaffolding for tethering small molecules together to enhance their potential.

The researchers used them to assemble molecules called PAMAM (poly(amidoamines)) together. PAMAM can vary in size, with the larger molecules showing some antimicrobial activity, which is not exhibited by the smaller ones. The team wanted to make the smaller, more flexible molecules better and efficient antimicrobials by attaching them to the carbon nanodot scaffolding, so they built two different molecules: CND-PAM1 and CND-PAM2.

The team tested both versions of CND-PAM and found that they both can kill Escherichia coli and Staphylococcus aureus at very low concentrations. The molecules exhibit greater antimicrobial activity against E. coli, so the researchers tested them against similar bacteria, including drug-resistant strains: Klebsiella pneumonia, Pseudomonas aeruginosa and Acinetobacter baumannii. In the case of K. pneumonia, the molecules were four times more effective at killing the drug-resistant than the normal strain.

The researchers also looked at whether the molecules with scaffolding helped make existing antibiotics work better. Adding CND-PAM1 to the antibiotic tetracycline made it more effective against resistant K. pneumonia, and adding CND-PAM2 to colistin made it four times stronger against A. baumannii.

"We hope our research will lead to more effective antibiotics, and also that it will inspire other researchers to use carbon nanodots as scaffolding for a variety of applications," said Dr. Ngu-Schwemlein.
-end-
Notes for editors

The article is "Carbon nanodots as molecular scaffolds for development of antimicrobial agents," by Maria Ngu-Schwemlein, Suk Fun Chin, Ryan Hileman, Chris Drozdowski, Clint Upchurch and April Hargrove (doi: 10.1016/j.bmcl.2016.02.047). It appears in Bioorganic & Medicinal Chemistry Letters, volume 26, (2016), published by Elsevier.

Copies of this paper are available to credentialed journalists upon request; please contact Elsevier's Newsroom at newsroom@elsevier.com or +31 20 485 2492.

About Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.

About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 35,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group, a world-leading provider of information and analytics for professional and business customers across industries. http://www.elsevier.com

Media contact

Annis Moreira
Elsevier
+31 20 485 2770
a.moreira@elsevier.com

Elsevier

Related Pneumonia Articles:

Elderly patients with pneumonia twice as likely to die as those with broken hips, yet underestimate the danger of pneumonia
Elderly patients who are hospitalised with pneumonia are twice as likely to die as those hospitalised with hip fractures -- yet many elderly people fail to accurately assess their risk of pneumonia, concludes research due to be presented at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID).
Pneumonia recovery reprograms immune cells of the lung
Researchers have determined that after lungs recover from infection, alveolar macrophages (immune cells that live in the lungs and help protect the lungs against infection) are different in multiple ways and those differences persist indefinitely.
Skin and mucous membrane lesions as complication of pneumonia
Painful inflammatory lesions of the skin and mucous membranes may occur in children who develop bacterial pneumonia.
Vaccine reduces likelihood of severe pneumonia
A new study has found severe pneumonia decreases by 35 per cent in children who receive a vaccine against a pneumonia-causing bacteria.
Bacteria in pneumonia attack using bleaching agent
Research shows that bacteria use hydrogen peroxide to weaken the immune system and cause pneumonia.
Many kids with pneumonia get unnecessary antibiotics, chest X-rays
Preschool children with community-acquired pneumonia often receive unnecessary tests and treatment at outpatient clinics and emergency departments, according to a nationally representative study led by Todd Florin, M.D., MSCE, from Ann & Robert H.
Certain psychiatric drugs linked with elevated pneumonia risk
A review of published studies indicates that use of benzodiazepines and benzodiazepine related drugs (BZRDs), which are prescribed to treat various psychiatric diseases, may increase the risk of pneumonia.
Bacterial pneumonia far more dangerous to the heart than viral pneumonia, study finds
Heart complications in patients diagnosed with bacterial pneumonia are more serious than in patients diagnosed with viral pneumonia, according to new research.
Research suggests vapers are vulnerable to pneumonia
The vapor from e-cigarettes seems to help pneumonia-causing bacteria stick to the cells that line the airways, according to research published in the European Respiratory Journal.
Pneumonia: Treatment with vaccines instead of antibiotics
A properly functioning immune system is key to resolve bacterial pneumonia.
More Pneumonia News and Pneumonia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.