Nav: Home

Cereal science: How scientists inverted the Cheerios effect

June 13, 2016

Liquid drops on soft solid surfaces interact by an 'inverted Cheerios effect', which can be tweaked so that the droplets move towards or away from each other, according to an international group of scientists publishing in the journal Proceedings of the National Academy of Sciences.

The phenomenon of the famous breakfast cereal clumping together when floating in a milk bowl is known as the Cheerios effect. The 'inverted Cheerios effect', identified in this paper for the first time, describes a similar scenario but with the roles of liquid and solid being interchanged: liquid droplets interact when resting on a solid -- but soft -- surface.

In recent years, the classical Cheerios effect has inspired a new set of manufacturing technologies for advanced materials and helped physicists understanding the gravitational collapse of galaxies. Similarly, the newly discovered 'inverted Cheerios effect' may open up new opportunities in engineering and the life sciences.

"Tuning the movement of liquid droplets could have implications for the performance of engineering technologies which rely on drops of water and other liquids," said co-author Dr Lorenzo Botto from Queen Mary University of London's School of Engineering and Materials Science (London, UK).

"For example, the physical phenomena we have highlighted in this paper suggest ways to design surfaces that prevent fogging or control heat transfer; for instance to create car windows that are always transparent despite high humidity or surfaces that improve heat management in conditioners or boilers. By making surfaces softer or harder, and changing the thickness of the soft layer, we will be able to control how the drops coalesce and spread on the substrate."

The international team of scientists suggest the interactions of the liquid particles can be tuned to repel each other or move towards each other by changing the thickness and softness of the substrate.

Co-author Stefan Karpitschka, who recently moved from University of Twente (Enschede, The Netherlands) to Stanford University (California, USA), said: "The droplets deform the surface on which they live, and due to this deformation, they interact; somewhat reminiscent of general relativity, from which we know that galaxies or black holes interact by deforming space around them.

"What is remarkable about our case though is the fact that the direction of the interaction can be tuned by the medium, without modifying the particles themselves."

Dr Botto added: "While the science is quite young, there are exciting implications of our work not just limited to engineering. For example, quantifying the forces at play when drops sit on a soft layer will also help us understand how cells interact with each other and with the soft tissues on which they live."
-end-


Queen Mary University of London

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.