Nav: Home

Molecular imaging of neuroendocrine tumors optimizes radiotherapy dose

June 13, 2016

San Diego, Calif. - Aggressive neuroendocrine cancer is something of a dark horse--a rare, elusive and persevering force linked to discouraging long-term survival rates. Researchers at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) are presenting a molecular imaging technique that allows oncologists to set patients' radiotherapy doses right at that critical limit of delivering the most powerful kill to neuroendocrine tumors (NETs) while protecting vulnerable vital organs.

The delicate balance of administering the maximum safe dose is called personalized dosimetry, and it can vary widely between patients. This poses a problem for clinicians. A number of radiotherapies that marry a small but potent amount of radioactive material and a targeted molecular compound have been gaining traction as progressive treatments for malignant NETs, which can develop wherever nerve cells and hormone-producing endocrine cells are present (e.g., gastrointestinal tract, pancreas, lungs, thyroid). Scientists are taking preemptive action by using already available molecular imaging systems to determine the optimal dose of one such peptide-receptor radionuclide therapy known as yttrium-90 DOTA0-Tyr3-octreotide (Y-90 DOTATOC).

"DOTATOC is a peptide that binds with somatostatin receptors that are often highly expressed in neuroendocrine cancers," said Mark T. Madsen, PhD, University of Iowa in Ioa City, Iowa. "With molecular imaging, we are able to see whether the DOTATOC imaging agent is taken up by the tumor. If it is, we know that the Y-90 DOTATOC radiotherapy will also reach the tumor and be able to kill tumor cells."

The objective here is to set the bar for the highest possible therapeutic radiation dose to NETs that does not exceed toxic radiation levels to the kidneys, which take on the brunt of the residual drug that does not bind to its targets. Results of this research showed that the use of positron emission tomography (PET) and single photon emission computed tomography (SPECT), which image physiological functions of the body such as peptide receptor activity, led to dramatically altered dosimetry in all participating patients.

For this study, researchers worked with 12 patients with malignant NETs to find an adaptive approach to personalized dosimetry during three cycles of radiotherapy. All adult patients underwent 4.44 GBq of Y-90 DOTATOC and pediatric patients received 1.85 GBq per m2 during the first course of treatment. Patients were also given an infusion of amino acids as a protective measure against kidney toxicity. The researchers evaluated blood and renal dosimetry after the first and second courses of radiotherapy to discern the best possible dose of Y-90 DOTATOC for successive courses. Dosimetry was performed by imaging patients with quantitative PET/CT about five hours after administration of Y-90 DOTATOC, followed by quantitative SPECT/CT imaging at 24, 48 and 72-hour intervals after injection. Y-90 burden and kidney mass were determined from reconstructed PET and CT images and verified using phantoms--inanimate objects that act just like patients' vital organs during imaging and therapy.

The researchers were able to complete 20 dosimetry evaluations for the 12 subjects involved in the study. Y-90 activity accumulation in the kidneys ranged from 1.4 to 3.6 percent. The kidney dose ranged from 0.6 to 2.7 mGy per MBq, and the blood dose ranged from 0.04 to 0.24 mGy per MBq. This led to marked changes in subsequent cycles of treatment. The dose of radiotherapy was not increased for two injections in children, and one patient's treatment ended after only one course of treatment. For the rest of the subjects, the dose of radiotherapy was increased in eight courses and decreased in three courses. Over all, the prescribed dose of radiotherapy was altered by more than 15 percent in a total of 11 courses of radiotherapy.

"Our approach combines the advantages of quantitative Y-90 PET and SPECT imaging to gather all the information required to accurately estimate kidney dose," said Madsen. "We expect better outcomes in radionuclide therapy treatment with fewer complications because we will be able to adjust patient dose either up or down as needed."

While this method of personalized dosimetry was used to determine the maximum dose that is safe for kidneys, this imaging technique could be equally used to determine the most effective dose to combat NETs. Further studies should elucidate how best to apply this technique to improve the standard of neuroendocrine cancer care.
-end-
Scientific Paper 582: "Personalized kidney dosimetry for Y-90 DOTATOC radionuclide therapy," M. T. Madsen, Y. Menda, J. J. Sunderland, D. Bushnell, M. K. Schultz, G. L. Watkins, M. E. Martin, T. M. O'Dorisio, M. O'Dorisio, University of Iowa, Iowa City, Iowa, SNMMI's 63rd Annual Meeting, June 11-15, 2016, San Diego, Calif.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine

Related Radiotherapy Articles:

Fat tissue may impede radiotherapy for breast cancer patients
According to research published online in The FASEB Journal, repeated irradiation of breast fat (also known as adipose tissue) produces an inflammatory response that ultimately reduces the efficiency of radiotherapy in breast cancer patients.
Adaptive radiotherapy reduces pneumonitis while controlling lung cancer
Researchers have found that it is possible to adapt radiation treatment for lung cancer so that it targets the tumor much more precisely, resulting in a significant decrease in radiation-induced pneumonitis -- a potentially fatal inflammation of the lung tissue.
Further reductions in radiotherapy to young children with brain tumors less successful
A team of investigators has determined that young children participating in a clinical trial to assess the effectiveness of reduced radiotherapy did worse when there were deviations from the treatment protocol.
Radiotherapy risks are much higher for smokers
Smokers treated for breast cancer have much higher risks than non-smokers of developing lung cancer or heart attack as a result of radiotherapy -- according to a new study funded by Cancer Research UK and published today in the Journal of Clinical Oncology.
Scientists investigate cancer radiotherapy to make improvements
A University of Rochester Medical Center study shows that when tumors are treated with radiotherapy, the benefits can be hijacked by the treatment's counteraction to trigger inflammation and dampen the body's immune response.
More Radiotherapy News and Radiotherapy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.