PET points to tau protein as leading culprit in Alzheimer's

June 13, 2016

San Diego, Calif. - Alzheimer's is a devastating and incurable disease marked by beta-amyloid and tau protein aggregations in the brain, yet the direct relationship between these proteins and neurodegeneration has remained a mystery. New molecular imaging research is revealing how tau, rather than amyloid-deposition, may be more directly instigating neuronal dysfunction, say presenters at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

Exhaustive brain research has pieced together how extracellular beta-amyloid plaques and intracellular neurofibrillary tangles of tau proteins are strongly linked to the neurodegenerative pathology of Alzheimer's disease. However, much of the research conducted to date has been post-mortem, which does little to help researchers understand the early development of disease. A new imaging study in living Alzheimer's patients is combining three methods of positron emission tomography (PET) to measure the orchestration of amyloid, tau and metabolic activity in the brain. Findings of the study showed a significant correlation between increased tau and decreased metabolic activity in the brain, a clear sign of neurodegeneration.

"Tau-imaging seems to be closely linked to actual onset of neuronal injury, whereas amyloid-imaging may allow us to detect a predisposition to disease many years ahead of the onset of symptoms," said Alexander Drzezga, MD, from the German Center for Neurodegenerative Diseases at the University Hospital of Cologne in Cologne, Germany.

For this study, 10 subjects with Alzheimer's underwent PET following the injection of three radiotracers: fluorine-18 fluorodeoxyglucose (F-18 FDG), which images regional metabolic activity; carbon-11 Pittsburgh compound B (C-11 PiB), which has an affinity for amyloid plaques; and F-18 AV-1451, an emerging imaging agent that binds to tau in the brain. Results showed that increased tau was directly associated with hypometabolism (reflecting neuronal dysfunction) in the brain. For amyloid-deposition, no strong association with hypometabolism was found. However, an indirect interactivity between tau and amyloid was observed particularly in the parietal cortex, in that the negative impact of regional tau-deposition on metabolism was stronger in regions with higher amyloid-burden.

"Integrating these molecular imaging tools offers the opportunity to investigate the possible independent and synergistic contribution of these protein pathologies in neurodegeneration in the living brain and, therefore, greatly advance our understanding of the mechanisms of Alzheimer's disease," said Drzezga.

Further investigation of these and other factors of neurodegeneration in living dementia patients could one day help clinicians improve diagnostic accuracy and lead to disease-modifying therapies for Alzheimer's, including new drugs that could potentially target tau in order to slow or stop degenerative effects in the brain. Multimodal imaging approaches like this one could allow more precise staging of neuropathology, even before the irrevocable onset of memory loss experienced by Alzheimer's patients. Furthermore, improved prediction, prognosis and therapy control/follow up may become feasible.

More than 46 million people are currently living with Alzheimer's across the world, and that number is expected to rise steeply to 131.5 million by 2050. The global economic cost of the disease is expected to approach $1 trillion in the same period, according to the newest data from Alzheimer's Disease International.
-end-
Scientific Paper 124: "Differential contributions of Amyloid and Tau burden to Neuro-degeneration in Alzheimer's Disease: A multimodal in vivo PET study." G. Bischof, J. Hammes, T. van Eimeren, A. Drzezga, Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital of Cologne, Germany. B. Neumaier, Institute for Radiochemistry and exp. Molecular Imaging, University of Cologne, Germany. The study has been performed in close cooperation with the Departments of Neurology and Psychiatry, University of Cologne, Germany, the Research Center Jülich, Germany and the German Center for Neurodegenerative Diseases. Presented at SNMMI's 63rd Annual Meeting, June 11-15, 2016, San Diego, Calif.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.