Nav: Home

Failed star creates its own spotlight in the universe

June 13, 2016

Although astronomers often refer to brown dwarfs as "failed stars," scientists at the University of Delaware have discovered that at least one of these dim celestial objects can emit powerful flashes of light.

A research team led by John Gizis, professor in UD's Department of Physics and Astronomy, discovered an "ultracool" brown dwarf known as 2MASS 0335+23, with a temperature of only 4400°F that can generate flares stronger than the sun's. Gizis reported on the finding on June 13 at the annual meeting of the American Astronomical Society in San Diego.

"This brown dwarf is very young by star standards -- only 23 million years old," Gizis said. "It has lots of flares that are as hot as or hotter than the flares coming off full-fledged stars. This shows that the warmer brown dwarfs can generate flares from magnetic field energy just like stars. Our work shows, however, that colder brown dwarfs cannot generate flares even though they also have magnetic fields."

Brown dwarfs actually begin life just as stars do, from collapsing clouds of gas and dust, but they don't get big enough and hot enough for hydrogen and helium to fuse at their core, generating the nuclear reactions that keep a star burning bright for millions and billions of years.

Gizis and his team, including doctoral student Rishi Paudel, and collaborators from the University of California, San Diego and Harvard University, made the findings using NASA's Kepler space telescope, which monitored the brown dwarf every minute for three months.

Poring through thousands of images the size of a postage stamp, the team searched for spikes in brightness. Suddenly, the brown dwarf would get twice as bright for two to four minutes. This happened a dozen times over the three-month period.

"These flares are very powerful -- stronger than the sun's. They show what the sun could do when it was younger. It's like its acne is going away," Gizis said wryly of the sun, which is "middle-aged" now, at 4½ billion years old, 200 times older than this brown dwarf.

Gizis actually discovered the brown dwarf in 1999 when he was a postdoctoral fellow at the University of Massachusetts at Amherst working on NASA's 2MASS (Two Micron All Sky Survey) project. It is now known to be part of the Beta Pictoris moving group, an association of stars born at the same time and all moving in parallel in space some 63 light years away.

They were all originally part of an interstellar cloud, an amalgamation of dust, gas and space plasma. When this cloud collapsed, the brown dwarfs got scattered into space like the seeds of a dandelion in a puff of wind.

Gizis said he hopes to learn more about ordinary stars by studying the most unusual and extreme ones like brown dwarfs.

Among their most unique features, brown dwarfs do a complete spin every five hours -- now that's a very short day.

"In some respects, brown dwarfs are a lot like planets, especially Jupiter, the gas giant in our solar system," Gizis said. "They end up being a similar size because they are failed stars, and they get colder and colder with time like a planet does. They also have clouds on them. With Kepler, you can see what the clouds do for several months. You can see how much change occurs--that's the type of thing we're trying to figure out."

Gizis is looking for evidence of clouds, and for planets, too. The brightness dims when a planet comes in front of a brown dwarf or other star. Flares also can impact planets, as space weather watchers well know.

When the sun blasts out a massive X-class solar flare, releasing energy equivalent to a billion hydrogen bombs exploding at the same time, Earth can feel the effects, in damaged satellites and communications systems to electrical power grids.

"We think there are probably planets around brown dwarfs, so the flares generated by brown dwarfs could be a problem for them," Gizis said. "But as to whether such a planet might be a habitable one like Earth, Gizis thinks that's a long shot.

"It would be more like Mercury, which is pretty much fried," he said. "There's some debate about that. I guess we'll find out."
-end-


University of Delaware

Related Planets Articles:

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
The stuff that planets are made of
UZH researchers have analyzed the composition and structure of faraway exoplanets using statistical tools.
Largest haul of extrasolar planets for Japan
Forty-four planets in solar systems beyond our own have been unveiled in one go, dwarfing the usual number of confirmations from extrasolar surveys, which is typically a dozen or less.
More Planets News and Planets Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.