Novel microplate 3D bioprinting platform for muscle & tendon tissue engineering

June 13, 2018

There is a strong need for medication that treats age-related degenerative muscle and tendon diseases. A critical bottleneck in the discovery and development of novel drugs for skeletal muscle is the lack of efficient and robust functional in vitro assays for compound screening.

In a new SLAS Technology original research article available now for free ahead-of-print, researchers in Switzerland describe the development of a novel screening platform with automated production of 3D muscle- and tendon-like tissues using 3D bioprinting. The novelty and importance of this new approach is the combination of the automated musculoskeletal tissue production using 3D bioprinting with a new microwell plate addressing the specific tissue attachment requirements. Thus, this screening platform represents a promising new tool for musculoskeletal drug discovery and development.

Muscle and tendon tissue models are fabricated by printing alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspensions in a dumbbell shape onto a newly designed cell culture insert in 24-well plates containing two vertical posts. The cells show high viability after printing in culture and good tissue differentiation based on marker gene and protein expressions.

In addition, functionality of the muscle tissue models is demonstrated by calcium signaling of Fluo4-loaded cells and myofiber contractility induced by electrical pulse stimulation. Finally, the authors successfully fabricate tendon-muscle-tendon co-cultures by printing tenocytes around the posts of the cell culture inserts and myoblasts between the posts.
-end-
A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues can be accessed for free at http://journals.sagepub.com/doi/full/10.1177/2472630318776594. For more information about SLAS and its journals, visit http://www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY:2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY:2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

SLAS (Society for Laboratory Automation and Screening)

Related Muscle Articles from Brightsurf:

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Duchenne: "Crosstalk" between muscle and spleen
Duchenne muscular dystrophy (DMD) is the most common muscle disease in children and is passed on by X-linked recessive inheritance.

Fantastic muscle proteins and where to find them
Setting out to identify all proteins that make up the sarcomere, the basic contractile unit of muscle cells, resulted in an unexpected revelation, providing experimental evidence that helps explain a fundamental mystery about how muscles work.

Strong change of course for muscle research
Scientists have discovered a new subtype of muscle stem cells.

Electronics integrated to the muscle via 'Kirigami'
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a donut-shaped kirigami device for electromyography (EMG) recordings.

Link between gut microbes & muscle growth suggests future approach to tackle muscle loss
Scientists led by NTU Singapore's Professor Sven Pettersson established a link between gut microbes and muscle growth and function -- a finding that could open new doors to interventions for age-related skeletal muscle loss.

What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.

Chloride-channel in muscle cells provides new insights for muscle diseases
Researchers from the University of Copenhagen have mapped the structure of an important channel in human muscle cells.

How do muscle and tendon connections last a lifetime?
Muscles are connected to tendons to power animal movements such as running, swimming or flying.

Oscillation in muscle tissue
When a muscle grows or a muscle injury heals, some of the stem cells develop into new muscle cells.

Read More: Muscle News and Muscle Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.