Nav: Home

Novel microplate 3D bioprinting platform for muscle & tendon tissue engineering

June 13, 2018

There is a strong need for medication that treats age-related degenerative muscle and tendon diseases. A critical bottleneck in the discovery and development of novel drugs for skeletal muscle is the lack of efficient and robust functional in vitro assays for compound screening.

In a new SLAS Technology original research article available now for free ahead-of-print, researchers in Switzerland describe the development of a novel screening platform with automated production of 3D muscle- and tendon-like tissues using 3D bioprinting. The novelty and importance of this new approach is the combination of the automated musculoskeletal tissue production using 3D bioprinting with a new microwell plate addressing the specific tissue attachment requirements. Thus, this screening platform represents a promising new tool for musculoskeletal drug discovery and development.

Muscle and tendon tissue models are fabricated by printing alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspensions in a dumbbell shape onto a newly designed cell culture insert in 24-well plates containing two vertical posts. The cells show high viability after printing in culture and good tissue differentiation based on marker gene and protein expressions.

In addition, functionality of the muscle tissue models is demonstrated by calcium signaling of Fluo4-loaded cells and myofiber contractility induced by electrical pulse stimulation. Finally, the authors successfully fabricate tendon-muscle-tendon co-cultures by printing tenocytes around the posts of the cell culture inserts and myoblasts between the posts.
-end-
A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues can be accessed for free at http://journals.sagepub.com/doi/full/10.1177/2472630318776594. For more information about SLAS and its journals, visit http://www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY:2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY:2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

SLAS (Society for Laboratory Automation and Screening)

Related Muscle Articles:

New insights on triggering muscle formation
A team of scientists led by Lorenzo Puri, M.D., Ph.D., has identified a previously unrecognized step in stem cell-mediated muscle regeneration.
Atomic resolution of muscle contraction
Osaka University researchers capture atomic images of muscle molecules in action, giving possibility of new nanomachines.
Obesity reprograms muscle stem cells
Obesity is associated with reduced muscle mass and impaired metabolism.
Metabolite protects mice against muscle wasting
Vitamin supplements that boost a key metabolite in the body can slow the advance of muscle wasting, according to a new investigation in mice.
Scavenger cells repair muscle fibers
Everybody knows the burning sensation in the legs when climbing down a steep slope for a long time.
How much protein do you need to build muscle? (video)
For those striving to build muscle, protein is essential. While this is obvious to many athletes and gym-goers, the biological and chemical processes between drinking a protein shake and getting 'swole' may not be so clear.
Actuators inspired by muscle
To make robots more cooperative and have them perform tasks in close proximity to humans, they must be softer and safer.
Teaching stem cells to build muscle
Researchers at SBP have identified pecific ways in which fetal muscle stem cells remodel their environment to support their enhanced capacity for regeneration, which could lead to targets for therapies to improve adult stem cells' ability to replace injured or degenerated muscle.
Smooth muscle
The FASEB Smooth Muscle Conference is widely regarded as the premier forum in smooth muscle biology, and thus, attracts internationally recognized leaders in a number of fields.
Genetically correcting a muscle disorder
Three independent groups of researchers provide preliminary evidence that CRISPR can treat genetic disorders by editing a gene involved in muscle functioning, restoring some muscle function in mice with a specific type of muscular dystrophy.

Related Muscle Reading:

Muscles: Testing and Function, with Posture and Pain (Kendall, Muscles)
by Florence Peterson Kendall (Author), Elizabeth Kendall McCreary (Author), Patricia Geise Provance (Author), Mary McIntyre Rodgers (Author), William Anthony Romani (Author)

Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination and Performance Testing (Daniels & Worthington's Muscle Testing (Hislop))
by Helen Hislop PhD ScD FAPTA (Author), Dale Avers PT DPT PhD (Author), Marybeth Brown PT PhD FACSM FAPTA (Author)

The Key Muscles of Yoga: Scientific Keys, Volume I
by Ray Long (Author), Chris Macivor (Illustrator)

Burn the Fat, Feed the Muscle: Transform Your Body Forever Using the Secrets of the Leanest People in the World
by Tom Venuto (Author)

Muscle and Sensory Testing
by Nancy Berryman Reese (Author)

Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination and Performance Testing
by Dale Avers PT DPT PhD (Author), Marybeth Brown PT PhD FACSM FAPTA (Author)

The Concise Book of Muscles, Fourth Edition
by Chris Jarmey (Author)

Musculoskeletal Assessment: Joint Motion and Muscle Testing (Musculoskeletal Assesment)
by Hazel M. Clarkson M.A. B.P.T. (Author)

Muscle After 40: Build Your Best Body Ever in Your 40s and Beyond
by Bryan Krahn (Author)

Muscle and a Shovel: 10th Edition: Includes all original volume content, Randall's Secret, Epilogue, KJV full index, Bibliography
by Michael Shank (Author), Joe Kelly (Cover Design)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.