Nav: Home

Tracking energy flow in large molecules

June 13, 2018

Absorption of light energy by large molecules is what drives nature: photosynthesis, vision, the synthesis of vitamin D and many other critical processes use light energy to perform their functions.

Absorption of light can also have negative effects: overexposure to sunlight damages DNA and can cause melanoma. Nature has developed ways to circumvent such effects. For example, protecting the skin is achieved by efficiently funneling the energy absorbed by DNA back to its initial (or ground) state, in which it was before absorption of light.

This process of energy flow, taking place within ultrashort time scales of tens to hundreds of femtoseconds (1 fsec = 10-15 seconds), is universal to all polyatomic molecules. Therefore, identifying the pathways of energy flow is crucial not only for understanding Nature, but also for a large range of applications.

The flow of energy proceeds through funnels that are called "conical intersections". These are points of the molecule's energy landscape where different electronic energy levels cross. The concept of conical intersections is universally used to explain energy flow in polyatomic molecules. Yet, they have never been observed! Different strategies were proposed to detect them, but at present, none seems experimentally feasible.

A team of scientists from the lab of Majed Chergui at EPFL within the Lausanne Centre for Ultrafast Science, the lab of Albert Stolow (University of Ottawa), and the lab of Michael Schuurman (NRC-Ottawa) have now devised an unambiguous approach to detect conical intersections in polyatomic molecules. The approach uses time-resolved X-ray spectroscopy (pioneered by the group of Majed Chergui) that is capable of detecting electronic structure changes with element selectivity, as the energy flows through the conical intersection.

The scientists carried out computer simulations of energy flow across the ethylene molecule, a model for a wide class of molecules of biological interest. The simulations revealed a clear and unambiguous fingerprint of the passage through the conical intersections by a change of charge at the Carbon atoms.

"Identifying conical intersections is something photobiologists and photochemists have long dreamed of and it opens up new insights for exciting future developments" says Majed Chergui.
-end-
Funding
  • Swiss National Science Foundation via the NCCR:MUST
  • National Science and Energy Research Council of Canada (Discovery Grants program)
Reference

Simon P. Neville, Majed Chergui, Albert Stolow, Michael S. Schuurman. Ultrafast X-ray spectroscopy of conical intersections. Physical Review Letters 120, 243001 12 June 2018. DOI: 10.1103/PhysRevLett.120.243001

Ecole Polytechnique Fédérale de Lausanne

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#479 Garden of Marvels (Rebroadcast)
This week we're learning about botany and the colorful science of gardening. Author Ruth Kassinger joins us to discuss her book "A Garden of Marvels: How We Discovered that Flowers Have Sex, Leaves Eat Air, and Other Secrets of the Way Plants Work." And we'll speak to NASA researcher Gioia Massa about her work to solve the technical challenges of gardening in space.