Nav: Home

New mechanism by which Alzheimer's disease spreads through the brain discovered

June 13, 2018

The waste-management system of the cell appears to play an important role in the spread of Alzheimer's disease in the brain. A new study has focused on small membrane-covered droplets known as "exosomes". It was long believed that the main task of exosomes was to help the cell to get rid of waste products. In simple terms, they were thought of as the cell's rubbish bags. However, our understanding of exosomes has increased, and we now know that cells throughout the body use exosomes to transmit information. It's now known that the exosomes can contain both proteins and genetic material, which other cells can absorb.

The Linköping researchers have shown in the new study that exosomes can also transport toxic aggregates of the protein amyloid beta, and in this way spread the disease to new neurons. Aggregated amyloid beta is one of the main findings in the brains of patients with Alzheimer's disease, the other being aggregates of the protein tau. As time passes, they form ever-increasing deposits in the brain, which coincides with the death of nerve cells. The cognitive functions of a person with Alzheimer's disease gradually deteriorate as new parts of the brain are affected.

"The spread of the disease follows the way in which parts of the brain are anatomically connected. It seems reasonable to assume that the disease is spread through the connections in the brain, and there has long been speculation about how this spread takes place at the cellular level," says Martin Hallbeck, associate professor in the Department of Clinical and Experimental Medicine at Linköping University and senior consultant of clinical pathology at Linköping University Hospital.

In a collaboration with researchers at Uppsala University, he and his co-workers have investigated exosomes in brain tissue from deceased persons. The research team at Linköping University found more amyloid beta in exosomes from brains affected by Alzheimer's disease than in healthy controls. Furthermore, the researchers purified exosomes from the brains from people with Alzheimer's disease, and investigated whether they could be absorbed by cells cultured in the laboratory.

"Interestingly, exosomes from patients were absorbed by cultured neurons, and subsequently passed on to new cells. The cells that absorbed exosomes that contained amyloid beta became diseased," says Martin Hallbeck.

The researchers treated the cultured neurons with various substances that prevent exosomes from being formed, released, or absorbed by other cells. They were able to reduce the spread of the aggregated amyloid beta between cells by disrupting the mechanism in these ways. The methods used in these laboratory experiments are not yet suitable for treating patients, but the discovery is important in principle. "Our study demonstrates that it is possible to influence this pathway, and possibly develop drugs that could prevent the spreading. The findings also open up the possibility of diagnosing Alzheimer's disease in new ways, by measuring the exosomes," says Martin Hallbeck. The research has received financial support from donors that include the Swedish Research Council, the Swedish Alzheimer's Foundation, and the Swedish Brain Foundation.
-end-
The article: "Alzheimer disease pathology propagation by exosomes containing toxic amyloid-beta oligomers", Maitrayee Sardar Sinha, Anna Ansell-Schultz, Livia Civitelli, Camilla Hildesjö, Max Larsson, Lars Lannfelt, Martin Ingelsson and Martin Hallbeck, Acta Neuropathologica, published online 13 June 2018, doi: 10.1007/s00401-018-1868-1

Link: https://link.springer.com/article/10.1007/s00401-018-1868-1

For more information, please contact:

Martin Hallbeck, associate professor, martin.hallbeck@liu.se, +46 10 103 1506 or +46 730 555103

Karin Söderlund Leifler, press officer, karin.soderlund.leifler@liu.se, +46 13 28 1395

Linköping University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of... View Details


The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or... View Details


The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology.

In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its... View Details


From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a... View Details


From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

A richly illustrated undergraduate textbook on the physics and biology of light

Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view... View Details


From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the... View Details


The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Leadership techniques backed by the world's most effective teams

The 7 Secrets of Neuron Leadership offers a diverse collection of wisdom and practical knowledge to help you build and lead your most effective team yet. Written by a former U.S. Navy diver, this book draws from the author's experiences and beyond to reveal key truths about the nature of teamwork, and expose the core of effective team leadership. You'll go back to ancient Greece to discover the nine personality types and the seven types of love that form the foundation of human interaction, and learn how... View Details


From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated.

The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today.... View Details


Neuron: A Tutorial Study Guide
by Nicoladie Tam, Ph.D.

“Neuron” is a part of the college-level Principles of Biology course series and the Neuropsychopharmacology course series textbooks. It is a tutorial written in questions and answers format to describe the anatomy and physiology of the neurons in the brain.

It is a study guide with in-depth explanations. Each section is a modular unit that is self-contained for easy reading. The principles and concepts are introduced systematically so students can learn and retain the materials intuitively.
View Details


The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)

Assuming no previous knowledge of computer programming or numerical methods, The NEURON Book provides practical advice on how to get the most out of the NEURON software program. Although written primarily for neuroscientists, teachers and students, readers with a background in the physical sciences or mathematics and some knowledge about brain cells and circuits, will also find it helpful. Covering details of NEURON's inner workings, and practical considerations specifying anatomical and biophysical properties to be represented in models, this book uses a problem-solving approach that... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#479 Garden of Marvels (Rebroadcast)
This week we're learning about botany and the colorful science of gardening. Author Ruth Kassinger joins us to discuss her book "A Garden of Marvels: How We Discovered that Flowers Have Sex, Leaves Eat Air, and Other Secrets of the Way Plants Work." And we'll speak to NASA researcher Gioia Massa about her work to solve the technical challenges of gardening in space.