Nav: Home

New opportunities for studying the activity of neural networks in real time

June 13, 2018

During the last decade, neurobiologists's attention has been focused on the study of the functioning of neural networks rather than single nerve cells. It is at this level that the key functions of the brain (processing, storage and transmission of information) are performed. However, researchers are facing some methodological difficulties in the investigation of neural networks. Traditional methods, for example, those aimed at studying the electrical and metabolic activity of single neurons do not provide any insight into a network's architectonics or its functional features. Commonly used methods such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), or classical biochemical methods are not applicable to the study of neural networks, since they do not allow experiments on live cells (biological samples must be fixed) and lead to the destruction of the bonds between the cells.

Scientists at the National Research Lobachevsky State University of Nizhny Novgorod have for the first time in Russia successfully used and optimized a method to determine the level of mRNA expression in living, actively functioning cells. This method is based on the use of gold RNA probes developed by Merck, Germany.

Due to their small size and exceptional properties, the RNA probes easily penetrate the cell and are capable of fluorescing after specifically binding to the target mRNA. The mRNA visualization is carried out by microscopy and does not require additional manipulations for the experimental sample preparation.

From the level of mRNA expression, one can judge about the activity of protein synthesis in the cell, both in normal state and under the influence of various stress factors.

According to Maria Vedunova, Director of the UNN Institute of Biology and Biomedicine, the use of RNA probes in combination with calcium imaging, a method for determining the metabolic activity of neural networks, made it possible to investigate the activity of those cells in the network where the mRNA of interest to researchers are synthesized.

"This complex of methods allowed Nizhny Novgorod scientists to make progress in the development of new approaches to protecting brain cells during hypoxia. The approach is based on the use of neurotrophic factors BDNF (brain-derived neurotrophic factor) and GDNF (glial-derived neurotrophic factor). These signal molecules are synthesized in the human body and regulate the differentiation of nerve cells, the growth of neuronal processes and the formation of contacts between cells (synapses)," explains Maria Vedunova.

It has been shown in this study that during hypoxia, BDNF and GDNF inhibit nerve cell death and maintain neuronal viability. Some features of the molecular mechanisms of neurotrophic factors' action in hypoxia were revealed, as well as the influence of one neurotrophic factor on the expression level of the other one.

Thus, it has been proved that RNA probes provide an informative method for neurobiological studies and open new prospects for studying the mechanisms of brain functioning in normal conditions and under unfavorable effects of stress factors.
-end-


Lobachevsky University

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
Researchers grow retinal nerve cells in the lab
Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain.
Nerve cells warn brain of damage to the inner ear
Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins.
It takes a lot of nerve: Scientists make cells to aid peripheral nerve repair
Peripheral nerve injuries, such as those resulting from neuropathies, physical trauma or surgery, are common and can cause partial or complete loss of nerve function and a reduced quality of life.
Nerve cells use each other as maps
When nerve cells form in an embryo they have to be guided to their final position by navigating a kind of molecular and cellular 'map' in order to function properly.
What hundreds of biomolecules tell us about our nerve cells
Researchers at the Luxembourg Centre for Systems Biomedicine, of the University of Luxembourg, have, under Dr.

Related Nerve Cells Reading:

Nerve Cells and Animal Behaviour
by Peter Simmons (Author), David Young (Author)

An extensively revised third edition of this introduction to neuroethology - the neuronal basis of animal behaviour - for zoology, biology and psychology undergraduate students. The book focuses on the roles of individual nerve cells in behaviour, from simple startle responses to complex behaviours such as route learning by rats and singing by crickets and birds. It begins by examining the relationship between brains and behaviour, and showing how study of specialised behaviours reveals neuronal mechanisms that control behaviour. Information processing by nerve cells is introduced using... View Details


Nerve Cells and Insect Behavior
by Kenneth D. Roeder (Author)

This book is an account of some aspects of nerve activity and insect behavior that have been of particular interest to the author. It is not intended as a review of insect nerve physiology. The author first explored each topic for its intrinsic interest rather than because it fitted into a major plan. In reviewing these adventures, the author, also serched for a common connecting theme, and has included some neurophysiological backgroung in the hope of relating them to the mainstream of research on the neutral basis of behavior. View Details


Nerve Cells and Insect Behavior: With an Appreciation by John G. Hildebrand, Revised edition
by Kenneth D. Roeder (Author)

The strike of a praying mantis's forelegs is so fast that, once they are set in motion, the mantis cannot control its aim. How does it ever manage to catch a fly? A moth negotiating the night air hears the squeak of a hunting bat on the wing, and tumbles out of harm's way. How?

Insects are ideal subjects for neurophysiological studies, and at its simplest level this classic book relates the activities of nerve cells to the activities of insects, something that had never been attempted when the book first appeared in 1963. In several elegant experiments--on the moth, the cockroach,... View Details


Culturing Nerve Cells, Second Edition (Cellular and Molecular Neuroscience)
by Gary Banker (Editor), Kimberly Goslin (Editor)

A do-it-yourself manual for culturing nerve cells, complete with recipes and protocols.

Because neurons and glia in culture are remarkably similar to those in situ, culture systems make it possible to identify significant cell interactions and to elucidate their mechanisms. This book is in many ways a do-it-yourself manual for culturing nerve cells, complete with recipes and protocols. But it also provides an understanding of the principles behind the protocols. In effect the contributors invite you into their labs and provide much of the information you would obtain from such... View Details


Notebook: Nerve Cells Colorful 6 x 9 Blank Empty Unlined 200 Pages Numbered
by Blank Unlined Journals (Author)

This notebook/journal has a glossy cover and contains 200 pages of unlined/blank/empty white paper that are numbered. It's perfect for all your journal and notebook needs. It's great for everyday writing, to-do lists, drawing, sketches grid dot journal, idea notebook, school, homework, journaling, and makes an awesome gift. View Details


Nerve Endings: The Discovery Of The Synapse
by Richard, M.D. Rapport (Author)

The dual stories of two doctors who jointly received the 1906 Nobel Prize follows the discoveries of Spanish countryside physician Cajal and Italian researcher Golgi, who raced against each other from primitive kitchen laboratories, made pivotal contributions to brain science, and ended their careers supporting significantly different theories. 15,000 first printing. View Details


Cellular Physiology of Nerve and Muscle
by Gary G. Matthews (Author)

Cellular Physiology of Nerve and Muscle, Fourth Edition offers a state of the art introduction to the basic physical, electrical and chemical principles central to the function of nerve and muscle cells. The text begins with an overview of the origin of electrical membrane potential, then clearly illustrates the cellular physiology of nerve cells and muscle cells. Throughout, this new edition simplifies difficult concepts with accessible models and straightforward descriptions of experimental results.

An all-new introduction to electrical signaling in the nervous... View Details


Governing Behavior: How Nerve Cell Dictatorships and Democracies Control Everything We Do
by Ari Berkowitz (Author)

From simple reflexes to complex choreographies of movement, all animal behavior is governed by a nervous system. But what kind of government is it―a dictatorship or a democracy?

Nervous systems consist of circuits of interconnected nerve cells (neurons) that transmit and receive information via electrical signals. Every moment, each neuron adds up stimulating and inhibiting inputs from many other neurons to determine whether to send an electrical signal to its recipients. Some circuits are dominated by a single “dictator” neuron that gathers information from many sources and... View Details


Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Addressing chronic back pain, diabetes, joint replacements, osteoarthritis, neurological issues, and more, Joseph “Dr. Joe” Christiano reveals
how this cutting-edge therapy can rapidly replace damaged cells in the body with no side effects or allergic reactions.
If you have been disappointed by ineffective treatments, the answer to improving your health may be in your stem cells. Dr. Joe explains
how adult stem cell therapy and activators are two of the new technologies in regenerative medicine that will be game changers in medical history.
... View Details


Multipotent Stem Cells of the Hair Follicle: Methods and Protocols (Methods in Molecular Biology)
by Robert M Hoffman (Editor)

This volume discusses methods for the study of multipotent and pluripotent stem cells of the hair follicle. The stem cells described are involved in both the growth of the hair follicle and its production of the hair shaft, as well as the growth of the hair follicle sensory nerve. Multipotent Stem Cells of the Hair Follicle: Methods and Protocols also explores very unexpected results such as that of the hair follicle-associated-pluripotent (HAP) stem cells, which not only have the capability for regenerating the hair follicle sensory nerve, but also can differentiate ex vivo and in... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#478 She Has Her Mother's Laugh
What does heredity really mean? Carl Zimmer would argue it's more than your genes along. In "She Has Her Mother’s Laugh: The Power, Perversions, and Potential of Heredity", Zimmer covers the history of genetics and what kinship and heredity really mean when we're discovering how to alter our own DNA, and, potentially, the DNA of our children.