Seawater yields first grams of yellowcake

June 13, 2018

SEQUIM, Wash. -- For the first time, researchers at Pacific Northwest National Laboratory and LCW Supercritical Technologies have created five grams of yellowcake -- a powdered form of uranium used to produce fuel for nuclear power production -- using acrylic fibers to extract it from seawater.

"This is a significant milestone," said Gary Gill, a researcher at PNNL, a Department of Energy national laboratory, and the only one with a marine research facility, located in Sequim, Wash. "It indicates that this approach can eventually provide commercially attractive nuclear fuel derived from the oceans -- the largest source of uranium on earth."

That's where LCW, a Moscow, Idaho clean energy company comes in. LCW with early support from PNNL through DOE's Office of Nuclear Energy, developed an acrylic fiber which attracts and holds on to dissolved uranium naturally present in ocean water.

"We have chemically modified regular, inexpensive yarn, to convert it into an adsorbent which is selective for uranium, efficient and reusable," said Chien Wai, president of LCW Supercritical Technologies. "PNNL's capabilities in evaluating and testing the material, have been invaluable in moving this technology forward."

Wai is a former University of Idaho professor who, along with colleague Horng-Bin Pan, was involved in earlier DOE-funded research to develop materials in order to increase domestic availability of uranium, which is mostly imported into the U.S. currently.

Wai founded LCW and, with funding from the Small Business Innovation Research program, worked out a new approach to adsorb the uranium onto a molecule or ligand that is chemically bound to the acrylic fiber. The result is a wavy looking polymer adsorbent that can be deployed in a marine environment, is durable and reusable.

The adsorbent material is inexpensive, according to Wai. In fact, he said, even waste yarn can be used to create the polymer fiber. The adsorbent properties of the material are reversible, and the captured uranium is easily released to be processed into yellowcake. An analysis of the technology suggests that it could be competitive with the cost of uranium produced through land-based mining.

PNNL researchers have conducted three separate tests of the adsorbent's performance to date by exposing it to large volumes of seawater from Sequim Bay next to its Marine Sciences Laboratory. The water was pumped into a tank about the size of a large hot tub.

"For each test, we put about two pounds of the fiber into the tank for about one month and pumped the seawater through quickly, to mimic conditions in the open ocean" said Gill. "LCW then extracted the uranium from the adsorbent and, from these first three tests, we got about five grams -- about what a nickel weighs. It might not sound like much, but it can really add up."

Gill notes that seawater contains about three parts per billion of uranium. It's estimated that there is at least four billion tons of uranium in seawater, which is about 500 times the amount of uranium known to exist in land-based ores, which must be mined.

Mining of underground uranium has environmental challenges not encountered with extracting it from the oceans. And Wai says the fibers, which have affinity for more heavy metals than just uranium, can likely be used one day to clean up toxic waterways themselves. He says the fibers have potential to extract vanadium, an expensive metal used in large scale batteries, from the oceans instead of mining it from the ground.

For now, based on the successful scaled-up testing in Sequim and significant production of yellowcake, LCW is applying for further SBIR funding for a uranium extraction field demonstration, to be led by PNNL, in the Gulf of Mexico, where the water is much warmer. The material performs much better in warmer water and extraction rates in the Gulf are expected to be three to five times higher, therefore making it more economical to obtain uranium from seawater.

The adsorbent technology is in the process of being licensed to LCW.
Tags: Energy, Environment, Nuclear Power, Marine Research

PNNL LogoPacific Northwest National Laboratory is the nation's premier laboratory for scientific discovery in chemistry, earth sciences, and data analytics and for solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on Facebook, Google+, Instagram, LinkedIn and Twitter.

DOE/Pacific Northwest National Laboratory

Related Uranium Articles from Brightsurf:

Russian scientists suggested a transfer to safe nuclear energy
Scientists from Far Eastern Federal University (FEFU), Ozersk Technological Institute, and the Russian Academy of Sciences have improved a processing technology of a monazite concentrate which is a mineral raw material employed as a source of rare earth elements and thorium.

Story tips: Molding matter atom by atom and seeing inside uranium particles
Story tips from the Department of Energy's Oak Ridge National Laboratory: Molding matter atom by atom and seeing inside uranium particles

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.

Old molecule, new tricks
Fifty years ago, scientists hit upon what they thought could be the next rocket fuel.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Uranium chemistry and geological disposal of radioactive waste
A new paper to be published on Dec. 16 provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's nuclear legacy.

Laser-produced uranium plasma evolves into more complex species
When energy is added to uranium under pressure, it creates a shock wave, and even a tiny sample will be vaporized like a small explosion.

Using building materials to monitor for high enriched uranium
A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium, which can be used to create nuclear weapons.

Uranium toxicity may be causing high rates of obesity and diabetes in Kuwait
Kuwait has some of the highest rates of obesity and diabetes in the world, and scientists don't know why.

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

Read More: Uranium News and Uranium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to